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Abstract

To produce compelling images, a real-time renderer is responsible for simulat-
ing many real-world visual effects. These effects range from modeling the material
properties of surfaces to evaluating complex lighting conditions, to the animation
of surfaces. Given the diversity of scenes in modern graphics applications such as
games, Industrial real-time renderers contain hundreds of thousands of lines of code
that define these shading effects. Like any complex software system, it is desirable
for these code bases to be implemented in a flexible and extensible framework to en-
able productive use and development. Additionally, real-time renderers must meet
extreme performance requirements, which requires using the GPU graphics pipeline
efficiently for the drawing tasks. As a result, the core logic for simulating various
visual appearances must be written as shader code that runs at different stages of
the GPU graphics pipeline. While traditional object-oriented programming princi-
ples work well for abstracting shading system concepts into an extensible and flex-
ible framework, their current implementations in existing programming languages
are not sufficient for generating high-performance GPU code. Specifically, render-
ers must make different trade-offs between shader compilation time and execution
efficiency by implementing dispatch of shading features differently either via dy-
namic control flows in shader code, or via static shader specialization. Also, ren-
derers must minimize and efficiently manage CPU-GPU communication. To meet
this challenge, this thesis contributes the design of the Slang shading language and
its compilation system, which adopts object-oriented programming concepts under
GPU performance constraints. We address introduce a design pattern called shader
components, which can be implemented with the enhanced language mechanisms
in Slang, to decouple shading logic from the specific implementation choices of
GPU code dispatching or CPU-GPU communication mechanisms. We demonstrate
the effectiveness the Slang shader compilation system in a reference renderer imple-
mentation that is modular, flexible, extensible and fast. We further evaluate our work
by adopting Slang into an existing research rendering framework to achieve higher

performance with a more maintainable code base.
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Chapter 1
Introduction

Modern real-time graphics applications, such as video games and 3D design visualization tools,
are designed to produce realistic and high resolution images of virtual scenes at over 60 Hz re-
fresh rate. These applications need to simulate a wide range of visual effects - including light
response from various types of surfaces, shadowing and reflection, atmosphere scattering, hu-
man animation, high resolution geometry details - and do so within a time budget of 16 ms for
a smooth user experience. A sub-system of the renderer, called a shading system, is responsible
for doing this. The role of a shading system is to compute the shape and visual appearance of
each scene object in various environment conditions as viewed from a specified camera angle. A
shading system must model many real-world concepts, such as light, materials, surfaces, cam-
era lens, and etc., and must be capable to simulate an object’s visual appearance as a result of

arbitrary composition of these concepts.

Modern shading systems are complex software systems. For example, Unreal Engine 4, one
of the most popular game engines, contains over 70,000 lines of shader code that runs on the
GPU. Similar to any complex systems, a shading system must be designed to enable productive
maintenance and extension of its features - it should have a framework that allows mix and
matching different shading features in the system to produce a wide variety of visual effects, and
also enables graphics programmers to easily extend the system by adding more shading features

to simulate new types of natural phenomena, without affecting exiting code.

Shading systems for many off-line film renderers have been authored using object-oriented
principles, which provide good abstractions for modeling a modular, extensible and flexible shad-
ing system framework. However, the challenge for authoring real-time rendering systems is to
make use of these modular abstractions while meeting extreme performance demands. For ex-

ample, consider a typical AAA video game which needs to draw 10,000 objects per frame. To



render at 60 Hz, the game needs to draw 600,000 objects per second. A main-stream CPU core

runs at 3 GHz, which leaves only 5,000 CPU cycles to draw a single object.

In order to achieve this performance goal, real-time shading systems must strive to undertake
the following measures:

Accelerate drawing tasks using the GPU graphics pipeline. To draw objects with complex
visual appearances in such a small time budget, graphics applications must off-load all the draw-
ing task to the GPU graphics pipeline. Using the graphics pipeline means that shading system
developers must implement shading features’ core computation logic as GPU shader kernels,
which are executed at different stages of the graphics pipeline, using C-like shading languages
such as GLSL[4] and HLSL[8]. Besides greater challenges in modularizing and maintaining a
heterogeneous code-base, developers are constrained by the GPU’s performance characteristics,

which requires the following commitments from a developer.

GPU code must be specialized to avoid dynamic dispatch when possible. Typically, a shad-
ing system implements a large library of shading features, but only a small set of features are
enabled in a single draw command to achieve the specific visual appearance for an object. Ex-
isting object-oriented languages like C++ implements polymorphism via dynamic dispatching,
which is not efficient enough on the GPU to meet shading systems’ performance requirements.
Since GPU kernel code runs millions of times for each vertex or pixel when drawing each object,
repetitively running the same dispatching logic for millions of times is a significant overhead.
Besides, modern GPU architectures exhibit reduced efficiency when executing large shader ker-
nels with dynamic control flows to dispatch execution. For this reason, shading languages do
not support object-oriented constructs for dispatching code, and developers are encouraged to
generate and use specialized variants of shader kernels that contains only the logic of needed
shading features when drawing each object. Due to the lack of object-oriented mechanisms in
shading languages, authoring extensible and flexible shader code becomes a challenge. System
developers have been using various ad-hoc meta-programing or C-preprocessor based techniques
to modularize and specialize shader code. These techniques often lead to degraded code main-

tainability, compromised performance, and increased system complexity.

CPU-GPU communication must be efficient. Even when using the GPU graphics pipeline to
draw objects, 5,000 CPU cycles is still not an ample budget to compose and transfer necessary
commands to the GPU. To prevent the CPU from being a severe performance bottleneck, the
shading system should transfer as small amount of data to the GPU as possible, and reduce the
CPU time needed in initiating the communications and sending the draw commands to the GPU.

Unfortunately, many existing shading languages do not provide sufficient support to facilitate



GPU data layouts for efficient communication without adversely affect code maintainability,
forcing shading systems to make trade-offs between better code maintainability and CPU-GPU

communication efficiency.

In Chapter 2, we will discuss the challenges in implementing a high performance shading
system in-detail. The crux of these issues is that developers want to think and program using
object-oriented mechanisms, and require the shader compiler to provide different implementa-
tions to the object-oriented mechanisms to meet the performance goals. More importantly, there
is no one-size-fit-all implementation to the language mechanisms. For example, shader code
specialization may not always be a viable option and some developers may still want to generate
dynamic dispatch code for more flexibility and faster compilation time; different shading systems
may want to pack data on the GPU differently to facilitate a different CPU-GPU communication
pattern. This means that the implementation of the shading language mechanisms should not
be a fundamental decision in the shading language design. Instead, the implementation choice
should be made available to the shading system by the shader compiler, to allow developers to

easily switch to different implementations that best suites their needs.

1.1 Goals and Contributions

The goal of this thesis is to enable shading system designs that are modular, extensible and flexi-
ble while achieving high performance at the same time. We observed that the fundamental cause
of the compromises in existing shading system implementations is the lack of necessary shad-
ing language features and shader compiler services to enable a modular and high performance
shading system design. This is largely due to existing shading languages such as HLSL and
GLSL are designed with a focus on exposing the hardware capabilities with minimal amount of
programming language constructs, instead of on providing necessary support to facilitate high
level shading system’s tasks such as dispatching GPU execution to different shading features and

efficient CPU-GPU communication.
In response, this thesis contributes:

1. A shading system design pattern centered around the shader components abstraction, which
governs modularization of shader code as well as organizing the CPU logic for compiling
and selecting specialized shader variants, and communicating shader parameters to GPU.
Shader components aim to give developers an experience of object-oriented programming
when abstracting shading logic for extensibility and flexible feature composition, while
providing the opportunity for the shading system to implement the object-oriented con-

structs via either specialization or dynamic dispatch, and pack the data required by shader



kernels for efficient CPU-GPU communication.

2. Identification of the shading language mechanisms and shader compiler services missing
in existing shading languages that prevents efficient implementation of the shader compo-
nents abstraction.

3. Design and implementation of the Slang shading language, which adds several key object-
oriented language constructs (including classes and interfaces with associate types) to ex-
isting shading languages, backed with multiple compiler implementations ranging from
static specialization to dynamic dispatch, to enable efficient implementation of the shader
components abstraction.

4. Design of the Slang shader introspection API for the shading system host code to effi-
ciently compile and select specialized shader kernel variants, and to efficiently marshal
and communicate parameter data to the GPU.

5. A reference shading system implementation that uses Slang and the shader components
concept to achieve high performance with a maintainable and extensible code base.

6. A thorough evaluation of the Slang shading language and shader introspection API through
a case study of adopting the shader components and the Slang system in a research render-
ing framework.

7. A discussion of the relationship between Slangs language mechanisms and prior rate-based
shading language work aimed at addressing similar issues. The thesis provides a retrospect
on how the most important goals achieved in these prior systems maps to disciplined uses

of more general language mechanisms in Slang.

1.2 Thesis Roadmap

Chapter 2 first provides a brief introduction to the GPU graphics pipeline and the shading sys-
tem for readers who are not familiar with real-time graphics rendering. It then demonstrates
the challenges, workarounds and compromises in designing and implementing a simple shading
system using existing shading languages.

Chapter 3 introduces the idea of shader components, which is a shading system design pattern

for achieving system extensibility and flexibility, and enabling performance optimizations.

Chapter 4 presents the Slang shading language. Implementing the shader components design
pattern requires additional shading language features and shader compiler services that are miss-
ing in existing shading languages such as GLSL and HLSL. This chapter discusses the key lan-
guage mechanisms in Slang and its associating introspection API that enable implementation of



shader components.

Chapter ?? demonstrates a shading system design that uses the shader components design pat-

tern and Slang shading language to achieve both system modularity and high performance goals.

Chapter 6 provides a case study of adopting Slang and shader components design pattern in a
research rendering framework, as a further evaluation of this thesis.

Chapter 7 discusses the relationship of this thesis to previous works on shading language and

shader compiler design.
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Chapter 2
Background

The demand for extreme performance in real-time graphics applications has lead to development
of highly specialized hardware architecture dedicated to solve the problem of graphics rendering
- the real-time graphics pipeline. Most of the unique challenges in designing and implementing
a real-time shading system stem from the need to efficiently use the GPU implementations of the
graphics pipeline, and do so without sacrificing the flexibility and extensibility of the shading
system. To illuminate how these challenges arise, this chapter first gives an introduction to the
graphics pipeline architecture and the software constraints for achieving high performance on the
GPU, then presents a detailed explanation on why the design goals of a shading system are hard

to achieve given existing tools and techniques to program against the GPU graphics pipeline.

2.1 The Graphics Pipeline

On the high level, the GPU graphics pipeline can be viewed as a virtual machine that executes
two types of instructions: modifying the state of the machine (referred to as a state-change
command in this thesis), and drawing an object on an image (a draw command). A state-change
command, as the name suggests, changes the states kept by the virtual machine that configures
how an object will be drawn. A draw command takes as input the geometry data defining the
shape of a scene object (usually a set of triangles), and modifies the content of an image as a

result of drawing the object.

Similar to a pipelined CPU architecture, execution of a draw command is divided into mul-
tiple pipeline stages on the GPU to enable pipelining parallelism over multiple draw commands.
Figure 2.1 illustrates the stages of a modern GPU graphics pipeline architecture (as defined by
Vulkan [6], Direct3D 12 [9], and OpenGL 4.5 [11]). This figure omits the Input Assembly and
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Figure 2.1: The GPU graphics pipeline architecture. Top: the simple GPU graphics pipeline
configuration without tessellation stages. Bottom: the full pipeline configuration with tessella-
tion enabled. Pipeline stages are shown in square boxes. Boxes in gray background represent
programmable pipeline stages, and boxes in white background represent fixed-function stages.



Geometry Shader stages for simplicity, as they do not affect the discussion of challenges in a
real-time shading system. The stage names established in this figure will be used consistently
through out this thesis.

The graphics pipeline can be configured to include different set of stages. In its simplest form
(as shown in the top half of Figure 2.1), the pipeline has four stages: Vertex Shading, Rasteriza-
tion, Fragment Shading and Framebuffer Update. In this pipeline configuration, a draw command
provides a stream of triangle vertices as input. The vertex shading stage runs an application pro-
vided kernel function (called vertex shader) to map each input vertex (often in 3D space) to a
2D position on the final image. The Rasterization stage then generates a set of image pixel lo-
cations (called fragments) that are covered by each triangle, using the projected vertex positions
computed in the vertex shading stage. Next, the Fragment Shading stage uses another applica-
tion provided kernel function (called fragment shader) to compute the color for each fragment.
Finally, the shaded fragments are used to update the image in the Framebuffer Update stage.
Note that both the Vertex Shading and Fragment Shading stages execute application provided
shader kernels, and they are called programmable stages, while the Rasterization and Frame-
buffer Update stages do not execute application code, and they are referred to as fixed-function

stages.

The simple pipeline configuration requires the input geometry data is a stream of triangles.
When the application uses more advances geometry representations, such as subdivision patches
or Bezier patches, it needs to configure the graphics pipeline to use its tessellation stages. Fig-
ure 2.1 (bottom) illustrates the full graphics pipeline with tessellation stages enabled. The full
pipeline adds three stages to the simple configuration: Tessellation Domain Generation, Tessel-
lation and Fine Vertex Shading. Since the Rasterization stage can only process triangles, the
role of these tessellation stages is to translate the more advanced geometry representation into a
set of triangles. When using tessellation, the Vertex Shading stages is no longer responsible for
projecting vertices onto image space, it is used as an additional stage to map the input geometry
data into another form to use as input to the Tessellation Domain Generation stage. The Tessel-
lation Domain Generation stage runs an application provided tessellation domain shader kernel
to output a stream of tessellation domains. A tessellation domain defines how a patch should be
subdivided into smaller triangles. For example, it can specify that a patch should be partitioned
as a 3x4 grid of triangles. Next, the fixed-function tessellation stage takes a tessellation domain
and output a stream of fine triangle vertices as the result of subdividing the tessellation domain.
The Fine Vertex Shading then executes a tessellation evaluation shader kernel to compute the
projected image space location of each fine triangle vertex. These projected fine vertex locations
can then be used by the rest of the pipeline to complete the draw command.



2.1.1 Programming Shader Kernels

Shader kernels are expressed as C-like functions in shading languages like GLSL [4] and HLSL [8].
The signature of a shader kernel is defined by the pipeline stage. For example, a vertex shader
kernel is a function that takes as input one vertex from the input geometry data, and outputs one
transformed vertex. A fragment shader kernel function takes interpolated vertex shader output
at a fragment location and compute the values that should be written to destination image at that

fragment location.

Shader kernels for different pipeline stages are linked together to define the shader program
that can be bound to the pipeline at once. This thesis uses the term bind shader program to
mean configuring the programmable pipeline stages to use shader kernels defined by the shader

program.

2.1.2 Managing Pipeline States

The pipeline needs to know many things to draw an object. In addition to what shader program to
use, a programmer must tell the GPU where to fetch the input geometry data, and what parameter
values to use when running the shader kernels. In this thesis, we use the term pipeline states to

refer to all the parameters and configurations required by the graphics pipeline to draw an object.

2.1.3 Using the Graphics Pipeline

Application access to the graphics pipeline is made available via standardized graphics APIs,
such as OpenGL, Direct3D and Vulkan. Theses APIs provide interfaces to send state-changing
and drawing commands to the graphics pipeline. In this thesis, we use the term bind shader
program to refer to setting the shader program to use by the graphics pipeline, and the term bind
shader parameters to mean configuring the pipeline state to use the specified shader parameter

values when executing a shader kernel.

To draw an object using the graphics pipeline, the application need to perform the following

operations:

1. Bind shader program, which sets the shader kernels for all the programmable stages).
2. Specify the memory location of the input geometry data.
3. Bind shader parameters, this provides concrete parameter values to the shader kernels.

4. Send a draw command.

10



2.2 GPU Architecture Characteristics

To use the GPU efficiently, it is important to understand the underlying GPU architecture that
implements the real-time graphics pipeline, and its implications on optimizing a graphics appli-

cation.

Drawing a frame typically requires executing a large number of draw commands, and a real-
time graphics application needs to draw many frames (typically 30 or 60) per second. For this
reason, GPUs are optimized for maximum processing throughput of draw commands, with ar-
chitectures that exploit both pipelining and data parallelism. We discuss both aspects in this

section.

2.2.1 Pipelining

GPU architectures are highly pipelined, executing draw commands in almost the same stages
as the graphics pipeline abstraction described in Section 2.1. Pipelining enables the GPU to
execute multiple draw commands at a time, but there is one caveat: some pipeline states, such as
the shader program, cannot be changed when there are active draw commands being executed.
This means that changing these states leads to a pipeline stall - if a draw command requires using
another shader program, the GPU need to wait until all the currently executing draw commands
to finish before it can start executing the new draw command. An application can suffer from

serious performance degeneration when it requests to change pipeline states too often.

For performance, it is important to exploit the coherence between draw commands to avoid
pipeline stalls as much as possible. For this concern, the graphics APIs are designed to make
every state change explicit - the CPU must send dedicated state-change commands to the GPU.

It is the application’s responsibility to reduce state changes by reordering draw commands.

Typically, shader kernels stay the same for large groups of draw commands, while some
shader parameter values change per object (thankfully, changing shader parameter values does
not cause pipeline stall in most GPU pipeline implementations). Shader parameter values are
usually updated at different frequencies: some parameters are shared by many draw commands,
while other parameters are updated per-object. Listing 2.1 shows a typical GPU pipeline com-
mand stream produced by an application. The application first binds the shader program and
shared shader parameter values. For each object, the application sets its geometry data location
and the object-specific shader parameter values, followed by a draw command. Such ordering
of draw commands reduces the number of state-change commands need to be communicated to

the GPU, and amortizes the GPU performance overhead in changing key pipeline states (shader

11
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/* pipeline states shared by first batch of draw commands =/
SetShaderProgram(shader0)
SetShaderParameter(...) // shared parameter values

/* object 0 */

SetShaderParameter (obj0.parameters) // per-object shader parameters
SetInputGeometryDataLocation (obj0.geometryData)
Draw() // issue a draw command

/* object 1 */

SetShaderParameter (objl.parameters) // per-object shader parameters
SetInputGeometryDataLocation (objl.geometryData)
Draw() // issue a draw command

/% pipeline states shared by second batch of draw commands =/
SetShaderProgram (shaderl)

SetFixedPipelineStates(...)

SetShaderParameter (...) // shared parameter values

/* object 10 =/

SetShaderParameter (objl0.parameters) // per—object shader parameters
SetInputGeometryDataLocation (objl0.geometryData)
Draw () // issue a draw command

/+ object 11 */

SetShaderParameter (objll.parameters) // per-object shader parameters
SetInputGeometryDataLocation (objll.geometryData)
Draw() // issue a draw command

Listing 2.1: A typical GPU pipeline command stream for drawing scene objects.

program) that causes pipeline stalls. This listing exhibits two frequencies of state changes - per-
batch and per-object. An actual application may divide state updates into more frequencies to

further reduce state changes.

2.2.2 Data Parallelism

Drawing a single object typically requires running tens of thousands of vertex shader instances(to
process each input vertex) and up to millions of fragment shader instances. This is accelerated by
the GPU with a multi-threading and wide SIMD architecture, with each SIMD lane processing
one vertex or fragment. For example, a single core Stream Multiprocessor core of NVIDIA’s
Pascal GPU architecture supports up to 32 way multi-threading (executing two of them at a
time), and each thread features 32 SIMD lanes. This enables a single core to process up to 1024

vertices or fragments simultaneously.

The GPU relies on multi-threading to hide memory latency. However, hardware multi-

threading requires all thread’s execution contexts (active local variables) being stored in fast

12



(a) geometry transform only (b) surface pattern (base color, roughness) (c) lighting

Figure 2.2: The shading features implemented in our example shading system.

on-chip memory. If a shader kernel requires a large execution context (has many live local vari-
ables), the GPU will not have enough on-chip memory to hold as many execution contexts as for
simpler shader kernels. Having not enough active threads running on-chip reduces the GPU’s

capability to hide memory latency and results in degenerated performance.

On the other hand, wide SIMD architecture means that the GPU is not as efficient when
executing code with divergent control flows. Therefore, developers always strive to avoid using
dynamic control flows in the shader code.

2.3 Designing a Real-time Shading System

2.3.1 Typical Shading Features

To reveal the challenges in a real-time shading system, this section briefly introduces several
most common shading features as seen in many typical shading systems. For clarity, we omit
many complex features in a production renderer that are not essential to the discussion of the

challenges in designing a shading system.

Figure 2.2 illustrates renderings of a couch with different shading features. The simple
pipeline configuration (that includes only two programmable stages: the vertex and fragment
shading stage) is used to render the couch because the geometry is defined by triangles and the
pipeline’s tessellation stages are not needed. From left to right, the figure illustrates three cat-
egories of shading features: geometry transform, surface patterns, and lighting. The following

text explains each of these categories in-detail.

Geometry Transform. The first step of rendering an image is to figure out where on the final
image should the object appear. The geometry transform features in our system takes a camera
setting (including camera position, view direction, and a field-of-view angle) as parameter, and
compute the projected screen-space coordinates of each 3D vertex in the input geometry data as

if it is viewed from the given camera. By performing geometry transform, we will see an image

13



as shown in Figure 2.2 (a). The projected shape of the couch appears correctly in the rendered
image, but the image shows no details of the couch surface - all the pixels within the couch’s
outline are white. This is because we have not included any shading features to determine the

color of each pixel representing the couch surface.

Surface Pattern. Surface patterns are used to provide a sense of an object’s physical material
and depict the imperfect details - such as dents, scratches dirt and wear - that are essential to
image realism. A surface pattern defines the light interaction properties at each location on the
surface, such as how much light is reflected or absorbed.

Figure 2.3 shows six different surface patterns applied to the same sphere geometry and
rendered with same lighting setup. When illuminated by lights, objects with various surface
patterns appears vastly different, suggesting an object’s material, such as metal, wood, brick and
dirt. Therefore, many shading systems refer to a surface pattern as a material. Figure 2.4 is a
close-up view of the sphere with a wood surface pattern. Details of imperfection such as dents

and scratches can be seen clearly in this view.

Modern AAA video games include tens of thousands of unique surface patterns, which de-
fines the detailed appearance for each type of scene object. For example, Bungie’s Destiny
features approximately 18,000 unique surface patterns. To aid development of this many surface
patterns, many shading systems (such as Bungie’s shader system and Unreal Engine 4) feature
a GUI editor that enables artists to create surface pattern shading logic by mix and matching

reusable building blocks from a predefined library.

To simulate the surface appearance of the couch in Figure 2.2, the renderer need to compute
a surface pattern. Figure 2.2 (b) visualizes the patterns for two surface properties: base color and
roughness. These renderings provide more details of the surface: they reveal the leather pattern,

seams between patches of leather, and wear on the cushion.

Lighting. Despite more details, the renderings of Figure 2.2 (b) still look flat and unrealistic due
to the lack of another important shading feature - lighting. In reality, the visual appearance of
an object is determined by the amount of light reflected by the object’s surface and perceived
by the camera. The surface patterns only defines how the surface reflects light. For example,
a red base color means the surface is reflecting mostly red light and absorbing lights in other
frequencies. The lighting feature computes whether a surface location receives any light from
light sources (shadowing), and determine how much light is reflected to the camera based on the
surface properties at that location. Figure 2.2 (c) shows a final image with both surface pattern
and lighting features computed. Lighting plays an essential part in revealing the details of a

surface pattern. As can be seen in the final image, surface details such as wrinkles, wear and
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Figure 2.3: Examples of various surface patterns. Six different surface patterns are used to render
the same sphere geometry, under the same lighting setup. Surface pattern defines how light is
reflected at various points on the surface, giving a sense of the object’s material.

Figure 2.4: Close-up view of a sphere rendered with a wood surface pattern. The surface pattern
depicts details of imperfection (such as dents and scratches) that are essential to provide a sense
of realism.
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(a) Spotlight (b) Directional light

(c) Sky light (d) Directional light + Sky light

Figure 2.5: Renderings of the couch object illuminated by different types of light sources. (a)
[lluminated by a spot light. (b) Illuminated by a directional light representing the sun. (c) Illu-
minated by a sky light. (d) Illuminated by a combination of the sky light and directional light, a
common out-door lighting setup.

seams are more pronounced under the spotlight.

Modern shading systems support many types of light sources and can compute lighting from
arbitrary collection of light sources. By setting up light sources, artists can create a diversity of
scene atmospheres. Figure 2.5 shows the same couch object illuminated by different types of
light sources.

All these shading features are computed in the programmable pipeline stages on the GPU.
For example, geometry transform needs to be done in the vertex shading stage to provide the
graphics pipeline the projected coordinates. The surface pattern is typically computed in the
fragment shading stage, because the surface property values vary at different locations of the
surface, and the fragment shader kernel by definition is executed once for each pixel fragment
(which represents a different surface location). Lighting is also computed in fragment shading

stage to provide pixel level details.

Drawing an object requires using a set of shader kernels in the programmable pipeline stages
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that implement a combination of these shading features depending on the object property and the
lighting setup of the scene. For example, to render the couch in Figure 2.2 (c), the shader ker-
nels must implement three shading features: camera view transformation, couch leather surface

pattern, and lighting using a shadowed spot light.

2.3.2 Authoring Modular Shader Code

Achieving software extensibility and flexibility is a well-studied field in computer science. One
of the most adopted technique in graphics applications is the object-oriented design. In this
section, we examine a modular shading system framework based on the object-oriented concepts.
We then discuss the challenges and workarounds in realizing this design due to limitations in

existing shading languages.
A Modular Design

As established in Section 2.3.1, a typical shading problem involve interaction among three types

of entities:

¢ A camera that defines how to transform the 3D object vertices to image-space coordinates.

e A surface pattern that defines the light response properties at each point on the object’s
surface.

¢ A lighting environment that determines the appearance of an object as affected by a col-

lection of light sources.

Listing 2.2 outlines the framework of shader code that models the relationship among these
three entities. The camera concept is encapsulated by the camera class (line 1), which defines
both the parameters (line 4-5) and computation for transforming object vertices into image-space.
The 1surfacepattern interface (line 24) abstracts many different types of surface patterns. It
defines that any surface pattern module must provide a computeSurfaceProperty method that
returns the surface properties (defined by the surfaceProperty struct in line 15) for a given

location on the object surface (specified through the uv parameter).

The Lighting class (line 37) implements the lighting feature that computes the object’s final
appearance as affected by a collection of light sources. The shading system needs to support three
different types of light sources: spotlight (as shown in Figure 2.2 (c)), directional light (typically
used to model the sun), and sky light (models illumination from all directions of the sky). The
ILight interface (line 30) abstracts the differences of light sources, and requires a light source
implementation to provide a computeLighting method to compute the lighting contribution of

the light source at a given surface location. The Lighting class simply sums up the lighting
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contributions from all input light sources stored in the 1ights array (line 39) to produce the final
color output.

To draw objects, the shading system must provide to the GPU graphics pipeline the shader
kernel functions that use the shading features in this framework. Listing 2.3 shows the entry-
points of the vertex and fragment shader kernels. The vertexshader function (line 21) takes
as input a Camera instance (cam) for transforming input vertices to image-space, and an vertex
(vert) from input geometry data. The vertexshader kernel function will be executed once for
each input vertex by the vertex shading stage of the GPU graphics pipeline. Therefore, the vert
parameter, which represents an input vertex, varies in each invocation of vertexshader kernel.
On the other hand, the same camera settings will be used transform all vertices from the input
geometry data, so the cam parameter is qualified with the uniform keyword to indicate that it
will not change across different kernel invocations. A uniform parameter is stored in a shared

GPU memory location that is initialized by the CPU and is read-only to shader kernels.

The structure for an input vertex from the geometry data is defined in the Inputvertex
structure (line 2). In addition to defining a world space 3D coordinate (position, line 4), an
input vertex also contains values of additional surface attributes at the vertex’s location (including
the normal and tangent vector, and a 2D coordinate, uv, used to identify the relative location of

the vertex on the object’s surface).

The vertexshader kernel function simply calls camera class’s transformvertex method
to compute a projected coordinate of the input vertex. It passes through all attribute values from

the input vertex as its output to make them accessible in the fragment shading stage.

The fragment shader kernel is defined by the Fragmentshader function (line 37). The frag-
ment shader kernel takes as input an interpolated vertex shader output at the fragment’s loca-
tion (v) that is varying with each fragment shader kernel invocation, and additional uniform
parameters for camera settings (cam), surface pattern (surfPattern) and lighting environment
(1ighting). The fragment shader kernel first calls the surfPattern’s computeSurfaceProperty
method to compute the surface properties at the fragment’s location (line 44), then calls 1ighting’s
computeLighting method with the computed surface properties to get the final color of the pixel
(line 46).

This design uses the interface concept from object-oriented programming to achieve extensi-
bility and flexibility. The entry-point kernel functions are written against the ISurfacePattern
and 1Light interfaces and are independent of which concrete surface pattern or light source is
in-use. The developer can easily add new types of surface patterns or light sources to the shader
system without modifying existing shading features or entry-point shader kernels. All possible

combinations of different surface patterns and light sources are guaranteed to work. These are
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/* The camera view transform module =/

1

2 class Camera

3004

4 // matrices used for transforming vertices
5 float4x4 projectionMatrix;

6 floatdx4 viewMatrix;

7 // position of the camera

8 float3 position;

10 // a method to transform vertex coordinates to image-space

11 float4 transformVertex (float3 input)

12 {

13 return projectionMatrix * viewMatrix * float4 (input, 1.0);

16
17 /+ defines the surface properties at a single surface location =*/
18  struct SurfaceProperty

19 {

20 float3 baseColor;
21 float3 normal;

22 float roughness;
23 float metallic;
24}

26 /» defines the interface for a surface pattern module */
27 interface ISurfacePattern

28 |

29 SurfaceProperty computeSurfaceProperty (float2 uv);
30}

32 /x defines the interface for a light source */

33 interface ILight

34 {

35 float4 computelLighting(float3 pos, float3 viewDir, SurfaceProperty surf);

38 /+ the lighting module, computes lighting at a surface location

39 using a collection of lights. x/

40 class Lighting

41 A

42 ILight lights[];

43 int numLights;

44 float4 computelighting(float3 pos, float3 viewDir, SurfaceProperty surf)
45 {

46 // sum up lighting results from individual light sources

47 float4 result = 0.0;

48 for (int i = 0; i < numLights; i++)

49 result += lights[i].computeLighting(pos, viewDir, surf);
50 return result;

51 }

52}

Listing 2.2: A conceptual shader framework written in a C++ like language that uses object-
oriented mechanisms to model three shading concepts: camera, surface pattern, and lighting.
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/* The content of a vertex from input geometry datax/

1

2 struct InputVertex

30

4 float3 position; // the world-space position of the vertex

5 float3 normal; // the surface normal vector at this vertex location
6 float3 tangent; // the surface tangent vector at this vertex location
7 float2 uv; // the surface local uv coordinate at this vertex location
8}

9

10 /+ Defines the per-vertex output in Vertex Shading stage */

11 struct VertexShaderOutput

12 {

13 float4 projectedCoordinates;

14 float3 worldPosition;

15 float3 surfaceTangent;

16 float3 surfaceNormal;

17 float2 uv;

19
20 /+ The entry-point kernel function for the Vertex Shading stage =/
21  VertexShaderOutput VertexShader (

22 uniform Camera cam,

23 in InputVertex vert )

24 |

25 VertexShaderOutput result;

26 // compute the projected coordinate using camera
27 result.projectedCoordinates = cam.transformVertex (vert.position);
28 // pass through rest of vertex attributes

29 result.worldPosition = vert.position;

30 result.surfaceTangent = vert.tangent;

31 result.surfaceNormal = vert.normal;

32 result.uv = vert.uv;

33 return result;

36 /* The entry-point kernel function for the Fragment Shading stage =*/
37 float4 FragmentShader (

38 uniform Camera cam,

39 uniform ISurfacePattern surfPattern,

40 uniform Lighting lighting,

41 in VertexShaderOutput v )

42

43 // compute surface properties at this fragment’s location

44 SurfaceProperty prop = surfPattern.computeSurfaceProperty(v.uv);
45 // compute lighting given the surface properties.

46 return lighting.computeLighting(v.position, cam.position, prop);
47}

Listing 2.3: A conceptual implementation of shader kernel entry-points for the vertex shading
stage and fragment shading stage, using modules from the framework illustrated in Listing 2.2.
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all good system properties that we seek to achieve.
An HLSL Implementation

In practice, a shader library implementation is subject to many additional constraints due to

performance goals and shading language restrictions.

The most commonly used shading languages that come with modern graphics APIs, are low-
level C like languages and does not include full support for object-oriented programming mech-
anisms. For example, most shading languages do not support interfaces. HLSL supports classes
and interfaces in a limited way, and does not allow an uniform parameter to have an abstract in-
terface type or defining an array of interface-typed objects (such as line 39 of Listing 2.2). GLSL
has no support for classes or interfaces. Furthermore, the requirement for an application to run
on multiple software/hardware platforms using different graphics APIs has forced shader code
be written using the common set of shading language mechanisms that exist on all platforms to

simplify porting shader code to different platforms.

Depending on how a shading system trades off between performance and flexibility, dispatch
of computation to concrete shading features is either implemented as a run-time operation via
dynamic control flow (if or switch statements), or by specializing shader kernels at shader
compile-time via meta-programming or preprocessor directives to generate a variant of shader
kernel that contains only the code for required shading features. Dispatch using dynamic control
flow in shader code requires minimal CPU work to compile and use the shader kernels (there
is only one version of shader code), but incurs GPU execution overhead because the same code
dispatching logic is repetitively performed at each shader kernel invocations (which occurs mil-
lions of times per frame), and because large shader kernels tend to use more registers which
leads to less efficient GPU utilization. On the other hand, dispatch via specialization incurs more
CPU work to compile and manage specialized shader kernel variants, and is infeasible when total

number of variants is unbounded.

Figure 2.6 shows an HLSL implementation of the example shader library. This implementa-

tion uses plain C-like functions and structs to mimic a class.

Dispatch of surface pattern is done at shader compile-time to reduce GPU execution over-
head. The HLSL implementation of the shading features is separated into several HLSL source
files. shaderLibrary.hlsl contains the implementation for the camera transform and light-
ing features, and includes a forward declaration of the surfacepattern struct and their asso-
ciated functions. Concrete implementations to the surface pattern feature are not included in
ShaderLibrary.hlsl, instead, they are provided in separate files, such as CouchPattern.hlsl

that implements the surface pattern computation for the couch, or woodPattern.hlsl that im-
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ShaderLibrary.hlsl (common features and declarations)

1 struct Camera
2 |
3 float4x4 projectionMatrix;
4 floatdx4 viewMatrix;
5 float3 position;
6 1}
7
8 float4 transformVertex (Camera cam, float3 input)
9 {
10 return cam.projectionMatrix * cam.viewMatrix * float4 (input, 1.0);
11 }
12
13 // forward declaration of a surface pattern module
14 struct SurfacePattern;
15 SurfaceProperty computeSurfaceProperty(SurfacePattern p, float2 uv);
16
17 // a unioned struct that contains parameters for all types of light sources
18 struct Light
19 {
20 int lightType;
21 DirectionallightParams dirLight;
22 SpotlightParams spotLight;
23 SkyLightParams skyLight;
24 '}
25 // functions that compute lighting from each types of light sources
26 float4 computeDirectionallighting(DirectionallightParams light,
27 float3 pos, float3 camPos, SurfaceProperty prop) {...}
28 float4 computeSpotLighting(SpotLightParams light,
29 float3 pos, float3 camPos, SurfaceProperty prop) {...}
30 float4 computeSkyLighting (SkyLightParams light,
31 float3 pos, float3 camPos, SurfaceProperty prop) {...}
32
33 // implementation of lighting feature
34 struct Lighting
35 {
36 int numLights;
37 Light lights[MAX LIGHTS];
38 }
39 float4 computeLighting(Lighting 1, float3 pos, float3 camPos, SurfaceProperty prop)
40 {
41 float4 result = 0.0;
42 for (int 1 = 0; i < l.numLights; i++)
43 {
44 Light light = 1l.lights[i];
45 if (light.lightType == 0)
46 result += computeDirectionallLighting(light.dirLight, pos, camPos, prop);
47 else if (light.lightType == 1)
48 result += computeSpotLighting(light.spotLight, pos, camPos, prop);
49 else if (light.lightType == 2)
50 result += computeArealighting(light.skyLight, pos, camPos, prop);
51 }
52 return result;
53 }
CouchPattern.hlsl (couch surface pattern implementation) WoodPattern.hlsl (wood surface implementation)
54 struct SurfacePattern 62 struct WoodPattern
55 { 63 {
56 Texture2D baseColorMap; 64 Texture2D baseColorMap;
57 Texture2D normalMap; 65 Texture2D detailedColorMap;
58 } 66 Texture2D normalMap;
59 SurfaceProperty computeSurfaceProperty ( 67 }
60 SurfacePattern p, float2 uv) 68 SurfaceProperty computeSurfaceProperty (
61 { ...} 69 SurfacePattern p, float2 uv)
70 { ...}

Figure 2.6: The same shading framework design as illustrated by Listing 2.2, implemented in
HLSL using dynamic control flows and preprocessor techniques to simulate the interface dis-
patching mechanism.
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EntryPoint.hlsl (shader kernel entry-points)

1 #include <ShaderLibrary.hlsl>

2 // include a concrete implementation of surface pattern

3 #include SURFACE_PATTERN_FILE

4

5 // define uniform parameters

6 cbuffer cb

7 A

8 Camera cam;

9 SurfacePattern surfPattern;

10 Lighting lighting;

11}

12

13 /* The entry-point kernel function for the Vertex Shading stage */
14 VertexShaderOutput VertexShader (in InputVertex vert )

15 {

16 VertexShaderOutput result;

17 // compute the projected coordinate using camera

18 result.projectedCoordinates = transformVertex (cam, vert.position);
19 // pass through rest of vertex attributes

20 result.worldPosition = vert.position;

21 result.surfaceTangent = vert.tangent;

22 result.surfaceNormal = vert.normal;

23 result.uv = vert.uv;

24 return result;

25 '}

26

27 /* The entry-point kernel function for the Fragment Shading stage */
28 float4d FragmentShader (in VertexShaderOutput v)

29 {

30 // compute surface properties at this fragment's location

31 SurfaceProperty prop = computeSurfaceProperty(surfPattern, v.uv);
32 // compute lighting given the surface properties.

33 return computelLighting(lighting, v.position, cam.position, prop):;
34}

Figure 2.7: The shader kernel entry-points as illustrated by Listing 2.3, implemented in HLSL.

plements a wood pattern.

To select a surface pattern implementation, the developer includes its corresponding HLSL
source file when compiling the shader kernels. Figure 2.7 shows the HLSL source file for
the shader kernel entry-points. First, the programmer includes ShaderLibrary.hlsl (as in
line 1). Depending on the actual scenario, the programmer selects different implementations
of surface pattern feature by specifying the macro value of SURFACE_PATTERN_FILE at shader
compile-time to include the an appropriate HLSL source file, such as couchpattern.hlsl or

WoodPattern.hlsl.

Contrarily, Dispatch of lighting computation for different types of light sources is imple-
mented using run-time control flow because the system needs to support unlimited light source

combinations. Our example shading system supports three types of light sources, spotlight,
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directional light and sky light. As shown in Figure 2.6 (line 18), the parameters of all types
of light sources are aggregated into a single Light struct. The Light struct has a 1ightType
field indicated the type of the light and which of the specific parameters is valid (dirLight,
spotLight or skyLight). The library includes functions that compute lighting for each type
of light sources (line 26-31). The lighting feature implementation (line 39) iterates through the
input light sources array. For each light source, the code uses a dynamic if statement to call the

light source’s corresponding lighting function based on the value of 1ightType field.

None of the dispatching implementations (for surface pattern and for light sources) are per-
fect. The current implementation for dispatching surface patterns makes it not possible for a
shader kernel to use two different surface patterns at the same time, because including two HLSL
source files that implement concrete surface patterns into the entry-point source would result in
redefinition of the surfacePattern struct and computeSurfaceProperties function. Mean-
while, extending the current implementation with a new type of light sources involve changing
code at multiple places: in addition to implementing a new function to compute the lighting con-
tribution from the light source, the developer also needs to modify the Light struct definition
to include a new set of light source parameters, assign a new ID to use in 1ightType field to
represent this new type of light and ensure this ID is not clashing with existing types of light
sources, and modify the dynamic dispatch logic in computeLighting function (Figure 2.6, line
39) to call the newly added lighting function. Furthermore, the 1ights array (Figure 2.6, line
37) is to be filled by the CPU with light source parameters. Since adding a new type of light
source changes the definition of Lighting struct, the CPU code must also be updated in order to
fill in the 1ighting array correctly.

With current shading languages, developers are forced to make decisions on how to imple-
ment dispatching when writing the shader code because this decision dramatically affects the
shader code and the host-side CPU code that uses the shaders. Once the decision is made, it is
not possible to change without significantly rewrite most part of the shading system. As a result,
it is very difficult for a shading system to adapt to different applications or GPU architectures

that can be more efficient with a different dispatching implementation.

To draw objects using the GPU graphics pipeline, the shading system needs to run CPU
logic to setup the GPU pipeline state to use the compiled shader program, and communicate
the parameter values for the shading features implemented in the shader program to the GPU.
While workarounds exist for authoring modular shader code, the bigger challenge is to achieve
high CPU performance in these tasks while maintaining shader code extensibility and flexibility,

which is discussed in the following sections.
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2.3.3 Compiling and Using Shader Programs

Because the dispatch of surface pattern is implemented via compile-time specialization, our shad-
ing system need to compile the shader kernels for each object that uses a different surface pattern.
This is done at initialization time after the scene is loaded, so no more shader compilation work is
necessary when the drawing the scene. For each surface pattern, our shading system invokes the
HLSL shader compiler to compile EntryPoint .hlsl with the SURFACE_PATTERN_FILE macro
specified to the corresponding source file that implements the surface pattern in the compiler
options, and stores the compiled shader program in a shader cache. When drawing an object, the
system finds the compiled shader program that implements the object’s surface pattern from the
shader cache, and bind it to the graphics pipeline. Because surface pattern is the only identifica-
tion of a compiled shader program, the system uses the name of the surface pattern (a string) as
the key to lookup from the shader cache.

2.3.4 Communicating Shader Parameters

When drawing large number of objects in a scene, the shader parameter values are updated at
different frequencies: the same shader parameter values for camera view transformation are used
to draw all objects in a scene, while the parameter values for surface pattern vary per object.
An efficient renderer exploits this property to minimize the CPU-GPU communication needed to
properly setup the shader parameters for each draw command.

To allow efficient parameter communication, Direct3D 12 and Vulkan introduce the concept
of parameter blocks (called descriptor tables and descriptor set respectively). Figure 2.8 illus-
trates an efficient use of parameter blocks for parameter communication. During initialization,
the renderer creates four parameter blocks to store parameter values for different shading fea-
tures on the GPU: block_0 stores the parameter values for the camera transform, block_1 and
block_2 stores the parameter values for differnet lighting environments (representing a spotlight
and a directional light, respectively), block_3, block_4 and block_5 stores the parameter val-
ues for different surface patterns. The camera transform parameter values in block_0 will be
used to draw all objects in the scene, and other parameter blocks are used in different scenarios.
Figure 2.8 (bottom) shows a list of GPU commands required to draw three objects in the scene.
To draw the first object, the renderer binds all parameter blocks for all the shading features (cam-
era, lighting and surface pattern) needed by the shader kernel entry-points. The second object
is affected by the same spotlight as the first object, and requires only a different surface pattern,
so the renderer only needs to bind a different parameter block containing the parameters to the

surface pattern feature. Similarly, the third object uses a different surface pattern and affected
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block_0 block_1 block_2

parameters for camera transform parameters for spotlight parameters for directional light

projectionMatrix [...] position [20.0 100.0 0.0] direction [0.0 1.0 0.0]

viewMatrix [...] direction [0.0 1.0 0.0] color [1.0 1.0 1.0]

position [0.0 5.0 -20.0] color [1.0 1.0 1.0] shadowMap E
coneAngle [45.0]

block_3 block_4 block_5

parameters for surface pattern 1 parameters for surface pattern 2 parameters for surface pattern 3

baseColorMap . baseColorMap . baseColorMap .

roughnessMap H roughnessMap . roughness [1.0]

tint [0.3 0.2 0.8] | |normalMap metallic [0.8]
metallic [0.8]

BindParameterBlock (0, block 0);
BindParameterBlock (1, block 1);
BindParameterBlock (2, block 3);
Draw (objectl) ;

BindParameterBlock (2, block 4);
Draw (object2) ;

BindParameterBlock (1, block 2);
BindParameterBlock (2, block 5);
Draw (object3) ;

Figure 2.8: An efficient way to communicate shader parameter values to the GPU using param-
eter blocks. Top: the shading system creates parameter blocks for different shading features at
initialization. Bottom: a sequence of GPU commands to draw objects using the parameter blocks.
Parameter blocks that contain shared parameter values are reused by different draw commands.
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by a different directional light instead of the spotlight, so the renderer needs to bind the two
parameter blocks for the surface pattern and lighting features.

This design has two major performance benefits. First, all parameter values for a shading
feature are bound to the graphics pipeline in a single bind parameter block operation. This
reduces the CPU overhead of repetitive API calls to communicate individual parameter values.
Second, the parameter blocks created for shading features that are shared by multiple objects,
e.g., camera and lighting, can be reused when drawing these objects without being repetitively
transferred to the GPU.

To ensure correctness, the CPU logic and the compiled shader kernels must assume the same
parameter block layout, so that the parameter values filled in by the shading system can be read
correctly by the shader. When using OpenGL (with the bindless texture extension) and Metal,
graphics programmers can encapsulate all shader parameters of a shading feature in a struct
type, as shown in section 2.3.2. These graphics APIs provide the mechanism to map a struct
type in the shader code to a parameter block. The layout of such a struct type is defined by
shading language compiler rules and can be queried by the host application to determine how to

populate the parameter block.

Unfortunately, the OpenGL bindless texture extension and Metal API are only available on
specific hardware and software platforms. The language mechanism that maps a st ruct type to
a parameter block is not a standard feature available in HLSL (the de facto standard shading lan-
guage used in video games), GLSL (without the bindless texture extension) and SPIRV (shader
IR used by Vulkan). Although Direct3D 12 and Vulkan support creating parameter blocks in the
host application, their corresponding shading languages have no first-class construct to map a
collection of shader parameters into a parameter block. By default, the HLSL compiler assumes
all shader parameters are in the same parameter block. To implement efficient use of parameter
blocks, the application developer must annotate each shader parameter in the entry-point shader
to explicitly specify the parameter block it belongs to. But doing so compromises the modularity
of a shading feature implementation, since the developer must know the content of each shading

feature’s parameters to properly write the layout annotation in the entry-point shader file.

Due to lack of universal shading language support for parameter blocks, it is not easy for a
shading system that needs to target Direct3D 12 or Vulkan to use parameter blocks as intended.
One common workaround is to communicate parameters by allocating and filling in a single
parameter block for each draw command (in the format expected by the shader kernel entry-

point), which incurs CPU overhead and unnecessary CPU to GPU communication.
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float4 computeLighting(Lighting 1, float3 pos, float3 camPos, SurfaceProperty prop)
{
float4 result = 0.0;
#if defined (ONE_DIRECTIONAL_LIGHT)
// special case 1: one directional light only
result = computeDirectionallighting(l.lights[0].dirLight, pos, camPos, prop);
#elif defined (ONE_SPOT_LIGHT)
// special case 2: one spot light only
result = computeSpotLighting(l.lights[0].spotLight, pos, camPos, prop);
#elif defined (DIRECTIONAL_SKY_LIGHT)
// special case 3: one directional light and one sky light
result = computeDirectionallLighting(l.lights[0].dirLight, pos, camPos, prop);
result += computeSkyLighting(l.lights[0].skyLight, pos, camPos, prop);
#else
// general case, use dynamic control flow
for (int i = 0; i1 < l.numLights; i++)
{
Light light = 1.lights[i];
if (light.lightType == 0)
result += computeDirectionallLighting(light.dirLight, pos, camPos, prop);
else if (light.lightType == 1)
result += computeSpotLighting(light.spotLight, pos, camPos, prop);
else if (light.lightType == 2)
result += computeArealighting(light.skyLight, pos, camPos, prop);
}
fendif
return result;

}

Listing 2.4: A new computeLighting function implementation that supports specialization. By
specifying additional preprocessor macro definitions at compile time, this function can be spe-
cialized into four variants, computing lighting for one directional light, one spot light, com-
bination of one directional light and one sky light, and for general combinations of lights, as
controlled by the preprocessor directives in line 4, 7, 10 and 14.

2.3.5 Specializing Shader Kernels

While our shading system implementation uses dynamic control flow to dispatch lighting com-
putation for different types of light sources to render scenes with arbitrary composition of light
sources, most objects are affected by a simple lighting setup comprising only one or two light
sources. For example, in an our-door scene, most objects are affected by only the sun light and
the sky light. The shading system can avoid the overhead of dynamic control flow in these cases
by using shader programs that are specialized to the concrete lighting setup when rendering an

object affected by a simple set of light sources.

Existing shading languages including HLSL provide no direct support to specialize shader
code. As a result, developers typically rely on the preprocessor to activate different parts of
shader code. To support specialization of the lighting feature, the computeLighting shader
function (as shown in Figure 2.6, line 39) is rewritten to allow conditional compilation into dif-

ferent variants. Listing 2.4 shows the new computeLighting function. This function can be
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compiled into four variants depending on preprocessor macros defined at compile-time. Defin-
Ing ONE_DIRECTIONAL_LIGHT specializes computeLighting function to compute on directional
light only (activating line 6), defining ONE_spoT_LIGHT yields a variant that computes one spot
light only, and defining DIRECTIONAL_SKY_LIGHT results in another variants that computes one
directional light and one spot light. If none of these macros are defined at compile-time, the code
for general code (line 16-25) is used, which computes lighting from arbitrary combinations of

light sources with dynamic control flow.

This preprocessor based implementation of lighting feature specialization complicates shader
program compilation and lookup. To enable specialization of lighting, the shading system need
to compile the a shader program for each distinct combination of surface patterns and light-
ing environments. Caching and lookup of shader programs also gets more complicated, as a
shader program is identified by a combination of surface pattern and lighting setup. This means
increased CPU overhead in using more complicated keys to lookup shader programs from the

shader cache when drawing each object.

2.3.6 Summary of Challenges

In summary, it is very difficult to implement a shading system that is extensible and efficient
using existing shading languages due to the following challenges:

Writing modular and extensible shader code that uses different types of dispatching. Classes
and interfaces are widely used language constructs in modeling complex software. However,
many existing shading languages lack support for similar language constructs. Although HLSL
does feature limited support for classes and interfaces, it provides no guarantee on how dis-
patching is implemented. Since implementation of dispatching (either via specialization or via
dynamic control flow) is critical to GPU performance, it must be controllable by the shading
system. Because of the lack of this shading language feature, existing shading system imple-
mentations resort on preprocessor directives to generate specialized shader code, which leads to

reduced extensibility and maintainability.

Looking-up a specialized shader program with low CPU overhead. The shading system need
to lookup a precompiled shader program to use when drawing each object. Since this lookup
happens at per-object frequency, it must be highly optimized. Existing shading system imple-
mentations often choose the preprocessor macros used to compile the shader program as the
lookup key, which is often a long string whose comparison is not efficient.
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Communicating shader parameters efficiently using parameter blocks. Efficient shader pa-
rameter communication requires the shader code to group parameters in different parameter
blocks based on frequency of update. It also requires the shader compiler to provide neces-
sary introspection API for the shading system to populate parameter blocks correctly. However,
HLSL does not provide a modular language construct that maps to a parameter block, and has
no introspection API for the shading system to query the parameter block layout required by a
shader program. This language limitation makes efficient parameter communication a conflicting
goal with modular shader code authoring.
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Chapter 3
Shader Components

As discussed in Chapter 2, developers wish to author shader code using object-oriented con-
structs for modularity and system flexibility, but the programming language implementation that
maps these object-oriented constructs to dynamic dispatching is insufficient to meet the per-
formance requirement in many cases. In fact, there is no single implementation of the object-
oriented language constructs that meets all developers’ needs: systems that require high render-
ing performance need to implement shader code polymorphism by Just-In-Time compiling and
caching specialized variants; systems that have fewer combinations of different shader modules,
but want to avoid the CPU cost of Just-In-Time compilation, need to statically populating all
possible shader code combinations and generate all specialized shader variants offline; systems
that involve flexible compositions that are too complex to be statically specialized, or systems
that prefer minimum shader compilation overhead for fast development iteration, need the mod-
ularity constructs being implemented with dynamic dispatch. One of the challenges is to design
a shading language that provide the object-oriented language constructs, but allow the shading
system to control how dispatching is implemented. At the same time, the new shading language

should also provide support for implementing efficient parameter communication.

The design of a shading language that aims to help a shading system to meet these high level
performance and productivity goals must be driven by the constraints and requirements from
actual shading systems. In this chapter, we present a shading system design pattern centered
around a concept that we call shader components, which allows authoring and using modular
shader code without being aware of how dispatching is implemented (thus making the imple-
mentation choice available as a late-bound decision after both the CPU and shader code are
written), while at the same time facilitates efficient shader parameter communication. We then
derive the shading language and shader compiler features needed to facilitate this design. To
illustrate the design pattern, this chapter uses code examples written in the shading language we
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created called Slang, whose detailed design is presented in Chapter 4.

3.1 Overview

Modularizing shading features requires a modularity abstraction that spans both host-side CPU
code and GPU shader code. On the GPU shader side, it encapsulates the core computation logic
and the shader parameters of a shading feature; on the CPU side, it is responsible for holding
and communicating the parameter values to the GPU, and ensuring the correct shader program
implementing the required code path is used by the graphics pipeline. We call this abstraction a

shader component.

Figure 3.1 illustrates the key concepts of the shader components abstraction, using the same
examples we have shown in Chapter 2. The remainder of this chapter describes the concepts in

this figure, and has been organized around key principles that underlie the design.

Shader components serve as a bridge between GPU shader and host-side CPU system code,
and so we discuss both shader- and host-side design decisions together. An overriding goal of
the design is that a component should feel like a single coherent thing even as it is accessed from
both CPU and GPU code.

3.1.1 Encapsulating Shader Code and Parameters

A typical shading feature, such as a surface pattern, requires a number of parameters, such as
texture maps, to perform its computations. Different implementations of the same type of feature
(e.g., different surface patterns) will in general need different parameters. In order to allow
various implementations of a feature to be easily swapped in and out, it must be possible to

encapsulate their parameters in shader code.

In our design, a shader component class represents a shading language modular unit that
encapsulates both the GPU shader code and parameters of a particular shading feature. For
example, CouchPattern in Figure 3.1 is a component class with parameters for a base color
texture map, a normal texture map, and a scaling factor to apply to texture coordinates. Another

surface pattern component class, like woodpattern, will in general have different parameters.
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component classes component instances

class Camera | cam: Camera |
class Lighting : ILighting 10: Lighting | ]
class WoodPattern : ISurfacePattern mat@: CouchPattern parameter
blocks
class CouchPattern : ISurfacePattern baseColorMap: l
param texture2D baseColorMap; L .
param texture2D normalMap; normalMap:
param float uvScale; _ uvScale:
SurfaceProperty compute(vec2 uv) {

SurfaceProperty rs;
uv *= uvScale;
rs.baseColor = baseColorMap.Sample(uv);

GPU
State

return rs;

entry point
component interfaces yP

interface ILighting {

class BasePass(

Camera c, shader
interface ISurfacePattern { ILighting L, shader program
Pattern compute(vec2 uv, ...); ISurfacePattern P) program
} { ...} database

Figure 3.1: Conceptual model for shader components. GPU state is driven from a shader entry
point function and component instances that serve as its arguments. Shading features and their
parameters are defined as component classes. Instances of these classes encapsulate parameter
values, and map to parameter blocks in modern APIs. An entry point and component arguments
together determine a shader variant. Component classes and instances have been color-coded to
match the interfaces they implement.
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3.1.2 Holding and Communicating Shader Parameters

The modularity benefits of shader components should extend to host code. In particular, the
encapsulation of code and parameters should be preserved, so that switching between different
feature implementations and/or combinations of parameter values can be accomplished with a

single operation.

Building on the idea of a shader component class, our design allows host application code
to allocate objects called component instances from these classes. An instance stores concrete
values for the parameters declared in the class. For example, mat 0 in Figure 3.1 is an instance of
the couchPattern class that binds baseColorMap parameter to a particular texture.

By using multiple shader component instances, an application can conveniently switch be-
tween sets of shader parameters. To make this operation efficient, each component instance that
an engine allocates is backed by a parameter block in the target graphics API. In Figure 3.1, the
component instance mat 0 can be used to set a parameter block in the GPU state.

It should be noted that in our design, shader component classes are implemented in shader
code (which requires the shading language to provide necessary mechanisms), while shader com-
ponent instances are created by the shading system at runtime. Specifically, we do not argue for
a one-size-fits-all runtime library that implements component instances for all shading systems.
Instead, the shader compiler provides services that allow shading systems to implement compo-
nent instances efficiently using parameter blocks; we discuss these services in Chapter 4.

3.1.3 Composing a Shader Program from Shading Features

In our design, a shader entry point coordinates the overall execution and dataflow of shader code

when rendering an object.

For example, the BasePass entry point in Figure 3.1 (and Listing 3.1) invokes surface pattern
and lighting features to compute object appearances. The main shader logic in Listing 3.1 is
almost the same as in Listing 2.3, except it wraps all the kernel function entry-points in a single

class so that the entry-point can be more easily referred to by the shading system.

A key point of our design is that an entry point should be thought of as incomplete, with
“holes” where specific components will be plugged in (these holes are parameters in a technical
sense, but should not be confused with shader parameters, so we avoid the term). The shape
of a hole can be given by concrete component classes (e.g., Camera in Listing 3.1, line 1), or

by component inferfaces. For example, the BasePass entry point requires a surface pattern
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class BasePass (Camera cam, ILighting lighting, ISurfacePattern surfPattern)

{

/+ The content of a vertex from input geometry datax/
struct InputVertex

{

float3 position; // the world-space position of the vertex

float3 normal; // the surface normal vector at this vertex location
float3 tangent; // the surface tangent vector at this vertex location
float2 uv; // the surface local uv coordinate at this vertex location

/* Defines the per-vertex output in Vertex Shading stage */
struct VertexShaderOutput
{

float4 projectedCoordinates;

float3 worldPosition;

float3 surfaceTangent;

float3 surfaceNormal;

float2 uv;

/* Vertex Shading kernel »*/

VertexShaderOutput VertexShader (InputVertex vert )

{
VertexShaderOutput result;
// compute the projected coordinate using camera
result.projectedCoordinates = cam.transformVertex (vert.position);
// pass through rest of vertex attributes
result.worldPosition = vert.position;
result.surfaceTangent = vert.tangent;
result.surfaceNormal = vert.normal;
result.uv = vert.uv;
return result;

/* Fragment Shading kernel =/

float4 FragmentShader (VertexShaderOutput v )

{
// compute surface properties at this fragment’s location
SurfaceProperty prop = surfPattern.computeSurfaceProperty (v.uv);
// compute lighting given the surface properties.
return lighting.computelLighting(v.position, cam.position, prop);

Listing 3.1: An example shader entry-point written in the Slang shading language that coordi-
nates execution of surface pattern and lighting features.
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component (pattern) that must implement the TSurfacepattern interface.

A component interface represents a kind of feature (e.g., surface pattern, lighting) in a shader
library, and declares the methods that all implementations of that feature must provide. For
example, the TsurfacePattern interface in Figure 3.1 declares a method named compute that

returns the surface properties at a given surface location.

The terminology we use for shader components uses object-oriented concepts like classes and
interfaces, which are typically associated with dynamic dispatch (e.g., virtual function tables).
However, the default semantics of our model are those of static polymorphism, where different
code is generated for each combination of component types. In essence, one can think of a shader

entry point like the following:

class BasePass( ILight light, ISurfacePattern surfPattern ) {...}

as being syntactic sugar for the following “templated” definition:

class BasePass<L : ILight, P : ISurfacePattern>( L light, P surfPattern ) {...}

An alternative approach would be to implement dispatch for components dynamically. As
discussed in Chapter 2, real-time shader code typically benefits from aggressive specialization,
so a shading language that supports classes and interfaces should ensure the default dispatch
implementation results in fast GPU code. However in certain cases such as the lighting feature
of our example shading system discussed in Chapter 2, generation of dynamic dispatch code
is required to provide flexibility. One key insight of shader components is to decouple the im-
plementation of dispatching from the how shader code and CPU code are written; this enables

developers to optimize for different use scenarios without re-implementing the system.

3.1.4 Shader Program Variant Lookup and Caching

At runtime, a shading system will fill in all the holes in an entry point with compatible compo-
nents, and thereby select both the shader parameters and shader program to use. In our design,
a shader program depends only on the classes of components used as arguments, and not on dy-
namic parameter values, so it is possible to populate a shader program database by enumerating

the space of possible component classes ahead of time.

The performance of lookup in a shader program database is critical, because shader programs
may be selected in the inner-most rendering loop. Rather than try to implement a one-size-fits-all
shader program database in a language runtime library, our design leaves the responsibility for
caching and lookup up shader program to the shading system, and requires the shader compiler

to provide specific services to enable efficient implementation. We discuss one implementation
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strategy used in our shading system in Chapter 2?.

3.2 Shading System Workflow

The shader components concept aims at simplifying shading system tasks into a minimal set of
operations that can be implemented efficiently with shader compiler support. In this section, we
review the tasks that need to be performed by the shading system and highlight the key places

that are improved by adopting shader components its corresponding compiler services.

3.2.1 Compiling and Loading Shader Code

The shading system must first load a library of shader code that defines all the shader component
classes and shader entry-points:

ShaderLibrary* 1lib = loadLibraryFromFile ("shaderlib.shader");

After this call, the shading system can look up shader component classes and entry points by
name:

ComponentClass* couchClass = findComponentClass (lib, "CouchPattern");
Entrypoint* basePass = findEntryPoint (1ib, "BasePass");

The handles to component classes and entry-points can be used to query the shader parame-

ters of a component, or to compile a final executable shader program.

3.2.2 Creating Component Instances

At runtime, the shading system needs to create component instances, including the underlying
API objects that represent a parameter block. A shading system can represent a component

instance as a C++ class like the following:

class ComponentInstance
{
ComponentClass* componentClass;
ParameterBlock* parameterBlock;
}i

When creating a component instance, the shading system must determine the required layout
and size for its parameter block. To this end, the shader compiler must provide an API for
inspecting the parameter layout of a component class. This allows the shading system to allocate
a parameter block and fill in concrete parameter values in the same format anticipated by the

shader.
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BindEntryPoint (basePass);

BindComponentInstance (0, cameralnstance);
BindComponentInstance (1, lightingInstance0);
BindComponentInstance (2, surfacePatternInstance0);
Draw (objectO) ;

BindComponentInstance (2, surfacePatternInstancel);
Draw (objectl) ;

BindComponentInstance (1, lightingInstancel);
BindComponentInstance (2, surfacePatternInstance2);

Draw (object2) ;

Listing 3.2: Sequence of operations to draw objects using shader components.

Component Instances

cameralnstance lightingInstance® surfacePatternInstance®

Class: Camera Class: Lighting Class: CouchPattern

Parameter Block: Parameter Block: Parameter Block:

Shader Component Binding State

entryPoint: basePass
currentInstances:

[0] cameraInstance

[1] lightingInstance®

[2] surfacePatternInstance®

Figure 3.2: Shading-system-maintained states used to configure graphics pipeline for a draw
command. entryPoint tracks the currently selected shader entry-point. currentInstances
tracks the currently selected component instances.

3.2.3 Drawing Objects

When submitting draw commands to the GPU pipeline, the shading system is responsible for
selecting an entry point and a set of component instances to use for its parameters. Listing 3.2
illustrates the sequence of operations when drawing objects. The functions BindEntryPoint,
BindComponentInstance and Draw are all shading system defined functions, not actual GPU
commands. First, the shading system selects a shader entry-point by calling BindEntryPoint in
line 1. BindEntryPoint function only changes a shading-system-maintained state tracking the

currently selected shader entry point (entryPoint in Figure 3.2).

The shading system BindComponent Instance to attach component instances to entry-point

parameters (line 3-5). This function modifies another shading-system-maintained state tracking
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the currently selected component instances at various slots (selectedInstances in Figure 3.2).

When it is time to issue a draw call, the chosen combination of entry point and components,
kept by the shading system state as shown in Figure 3.2, are used to prepare the GPU pipeline

for rendering.

In order to configure the GPU for rendering, the framework must both determine the final
compiled shader kernels to use, and bind suitable parameter blocks that will provide parameter
data to those shader kernels. With shader components, these two tasks are unified. The currently
bound shader entry-point (entrypPoint), together with the component classes of all currently
selected component instances (current Instances) fully defines an executable shader program.
The shading system can lookup a shader program cache to see if a shader program resulting
from this combination of entry-point and component classes has already been compiled; if not,
the shading system calls the shader compiler to generate the required shader program and put it
into the cache. The shading system then sets the GPU pipeline state to use the resulting shader
program. On the other hand, since each component instance also encapsulates a parameter block
containing the required parameter values for the component, the shading system directly binds

the parameter block to the GPU pipeline state to complete parameter communication.

3.3 Benefits of the Shader Components Design

Compared to a shading system implementation using existing shading language, such as the one

discussed in Chapter 2, shader components provide the following benefits to a shading system:

Enable efficient shader parameter communication. Because a shader component instance en-
capsulates a parameter block, the shading system can pre-allocate parameter blocks and fill them
with parameter values during initialization (when the scene is loaded). Parameter blocks reside
on the GPU memory, so no more CPU-GPU communication is required to transfer parameter
values to GPU when drawing objects. The shader compiler is required to guarantee that a pa-
rameter block created from a component class can be used with any compiled shader programs
that use the component class. This allows a parameter block (such as the parameter block for the

camera or lighting feature) to be reused in drawing many different objects.

Streamlined shader program compilation and selection. Instead of using preprocessor macros
to control shader code generation, in the shader components design the same mechanism used to
set shader parameters (bind component instances) is also the mechanism to select shader code.
This streamlines the host-side logic of a shading system. Furthermore, a shader program can be

uniquely identified by the entry-point and the component classes used to compile the program.
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This allows very compact key structure (such a short array of IDs of the entry-point and compo-
nent classes) for looking-up shader programs from a cache. In contrast, a shading system that
uses preprocessor to generate specialized shader programs often uses a concatenated string of
preprocessor macros passed to the compiler as the identifier of a shader program. Generating
and comparing complex strings incurs large CPU overhead, which is eliminated in the shader

components design.

Shading system controls the implementation of dispatch. Shader code implementing the
shader component concepts uses classes and interfaces to achieve polymorphism. The imple-
mentation of code dispatch - via dynamic control flow or via static specialization is controlled
by a compiler option. This implementation decision is even decoupled from the host-side logic
of the shading system. The shading system always follows the same sequence of operation -
bind entry point, bind component instance, draw - regardless of how shader code dispatch is
implemented. This enables shading systems to easily adapt to different hardware and scene con-

figurations and make the right decision per use-case.

40



Chapter 4

The Slang Shading Language (Proposed
Work)

This chapter presents the Slang shading language, which extends HLSL with several key lan-

guage features to support implementation of the Shader Components shading system design.

4.1 Design constraints and principles

We want Slang to be a shading language that replaces HLSL in production environments. This
implies that Slang should not only provide software engineering and performance benefits to
graphics developers, but also designed to be easy to learn and to improve productivity in most
use scenarios. To ensure these properties, we impose the following principles when making

design decisions for Slang:

Support implementing shader components. We believe that shader components are a good
shading system design. Slang should provide sufficient language mechanisms to make it easy for

developers to implement shader components.

Language features should be familiar to graphics developers. Slang is expected to be used
by graphics developers who are familiar with popular object-oriented languages such as C++,
C#, Go and Swift. For this reason, we prefer using well-known language features from these
languages, and avoid introducing exotic language constructs that would require non-trivial learn-
ing effort. This ensures any shader code written is Slang can be easily understood by developers

even if they have not used Slang before.
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No presumed policies. Shading systems often impose a series of policies on organizing shading
features, using some (but not other) mechanisms to communicate parameter data, and when or
whether to use specialized shader code for certain shading features. For example, the shader
components design assumes one policy that one component corresponds to one parameter block.
While Slang is designed to enable implementation of shader components, we still want the lan-
guage itself to be provide only necessary mechanism for developers to implement any policies

they want, instead of forcing a shading system that uses Slang to opt-in a certain policy.

Compatible with existing HLSL. Adopting a new shading language in an existing shading
system can be a very challenging task. We would like to make this adopting process easy by
allowing developers to adopt the new language features for a small part of the code-base at a
time and gradually migrate to a new shading system design. This means that the Slang compiler
should be able to accept both refactored shader code that uses the new language features, as well
as any existing HLSL shader code. For this reason, we made Slang fully compatible with HLSL -
new language features are implemented as extensions to HLSL that do not change the semantics

of existing language constructs.

Report errors early and accurately. We would like the Slang compiler to be able to find most
code errors at earliest possible stage and report error messages that pin-points the true source of
problem. To improve development productivity, Slang is designed to run full check on individual
modules, and provide guarantee that any valid composition of individually checked modules form
a valid shader kernel. We seek a design that enables error messages to point directly to the code
location that is to be blamed, and not having the programmer to infer the true cause from error
messages. This is in contrast to C++ templates or ad-hoc preprocessor based code composition,
where the compiler only sees the specialized code and thus cannot provide effective advises on

pre-specialization module code.

4.2 Language Mechanisms

This section covers the key language features we add to Slang. Slang inherits most of the syntax
and language features from HLSL, so that most existing HLSL code can be compiled directly
by the Slang compiler. We omit the features that are already in HLSL unless it interacts the new

features in an interesting way.
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// defining a generic struct type]
struct Pair<TKey, TValue>
{
TKey key;
TValue value;
bi

// defining a generic function returning a generic struct type
Pair<TKey, TValue> makePair<TKey, TValue> (TKey k, TValue v)
{

Pair<TKey, TValue> rs;

rs.key = k;

rs.value = v;

return rs;

}

// explicit specialization
Pair<int, float> pairl = makePair<int, float>(1, 2.0);

// implicit specialization
Pair<int, float> pair2 = makePair(l, 2.0);

Listing 4.1: Example of generics in Slang.

4.2.1 Generics

Slang supports defining generic types and functions, as shown in Listing4.1. The syntax is
similar to Java and C#. Line 2 defines a generic st ruct Pair, which has two generic parameters:
TKey and Tvalue. makePair (line 9) is a generic function with Tkey and Tvalue as its generic
parameters and returns a Pair. Slang supports two ways to call a generic function, either with
explicit generic type arguments (line 18) or relying on the compiler to deduce the type arguments

from argument list (line 31).

One important use of generics is to define shader entry-points that are parameterized on
shader components. Listing 4.2 defines a shader entry-point for a typical forward lighting render
pass as a generic struct type Forwardpass. The struct defines both vertex shader and fragment
shader kernel functions (line 10 and line 15), as well as three generic parameters: TGeometry,
TMaterial and TLight. These generic parameters stands for three categories of shader compo-
nent classes that can be used to specialize this entry-point: geometry transform, material, and
lighting. Line 6-8 declares the shader parameter for each shader component as a member field.

These member field represents references to component instances.

4.2.2 Interfaces as generic constraints

Similar to many other languages, an interface in Slang defines the methods that a type needs

to implement in order to claim its conformance to the interface. For example, Listing 4.3 defines
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struct ForwardPass<TGeometry, TMaterial, TLight>
{

struct InputVertex {...};
struct VertexOutput {...};

TGeometry geom;
TMaterial material;
TLight light;

VertexOutput vertexShader (InputVertex vertIn)
{

}

float4 fragmentShader (VertexOutput vsIn)
{

}

Listing 4.2: Example of generics in Slang.

interface IMaterial

{
float4 getColor();
}

struct SolidColorMaterial : IMaterial

{
float4 getColor ()

{
return float4(1.0);

}
bi

Listing 4.3: Example of defining an interface and a concrete type that implements an
interface in Slang.

a IMaterial interface and a type SolidColorMaterial that implements the interface with its

implementation of the getColor () method.

Declaring an interface conformance in the definition of a concrete type (as in line 5 in List-
ing 4.3) triggers the compiler to check the type definition and verify all required methods are
indeed provided in the concrete type. An error message will be generated if the actual type

definition does not contain required methods as required by the declared conformance.

In Slang, interfaces are used to define constraints on generic type parameters. Listing4.4
shows the same entry-point shader as in Listing 4.10, but augmented the global generic parame-
ters with interface conformances declarations. For example, line 17 states that the global generic
parameter TGeomet ry must be a type that conforms to the interface 1Geomet ry. With this knowl-
edge, the compiler can verify that calling computeGeometry method on global variable geom

(line 27) is valid, since geom must have a concrete type that conforms to 1Geometry interface,
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interface IGeometry

{

}

interface IMaterial

{

}

interface ILight

{

}

float4 getColor();

VertexOutput computeGeometry (InputVertex vin);

float4 computelLighting(float4 surfaceColor);

struct ForwardPass<TGeometry : IGeometry, TMaterial : IMaterial, TLight

{

TGeometry geom;
TMaterial material;
TLight light;

float4 color
return light.computeLighting(color);

struct InputVertex {...};
struct VertexOutput {...};

VertexOutput vertexShader (InputVertex vertIn)

return geom.computeGeometry (vertlIn);

float4 fragmentShader (VertexOutput vsIn)

material.getColor();

Listing 4.4: Using interfaces as generic constraints.

which does provide computeGeometry.

compile time, when the compiler sees only individual types.
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We decide to stick with the same design as Java and C*that requires the user to explicitly
specify type conformance when defining a concrete type, which is in contrast to the Go lan-
guage, where interface conformance is derived by the compiler from the use site of the concrete
type. While automatic interface conformance deduction saves programmer’s time in writing the
declarations, it delays the checking of interface conformance until a use of the concrete type is
seen. One of our design principles is to allow the compiler to check as early as possible: the use
of a concrete type may not be seen until it is used to specialize a shader variant, which typically
happens are run time of the shading system. Explicit interface conformance declarations allow

the Slang compiler to check for incomplete concrete type implementations at shading system



S =

interface IGeometry
{
VertexOutput computeGeometry (InputVertex vin);

}

interface IMaterial

{
float4 getColor();

}
interface ILight

{
float4 computelLighting(float4 surfaceColor);

}

struct ForwardPass<TGeometry : IGeometry, TMaterial : IMaterial, TLight : ILight>
{

struct InputVertex {...};

struct VertexOutput {...};

ParameterBlock<TGeometry> geom;
ParameterBlock<TMaterial> material;
ParameterBlock<TLight> light;

VertexOutput vertexShader (InputVertex vertIn)
{
return geom.computeGeometry (vertIn);

}

float4 fragmentShader (VertexOutput vsIn)
{
float4 color = material.getColor();
return light.computeLighting(color);

bi

Listing 4.5: Using parameterBlock<T> to specify that the parameters of each shader compo-
nents comes from a parameter block.

4.2.3 EXpliCit ParameterBlock<T> construct

As discussed in Chapter 3, we need a modular construct in the shading language that maps to
a parameter block. HLSL already features a mechanism to represent parameters that comes
from a constant buffer: a global variable of type constantBuffer<T> stands for a reference to
a constant buffer resource, whose content is defined by type T. The rest of the shader code can
treat this global variable as a pointer to T and access the data members defined by T. This is
a good mechanism to specify parameter data communication, except that ConstantBuffer<T>
works only when T contains only ordinary typed parameters and no resource parameters. If T
contains any field of a resource type, such as Texture2D, the field will be separated out into a
standalone global variable declaration, and the shading system must still query for the binding

indices of these individual resource typed fields to complete parameter communication.

We added pParameterBlock<T>, which extends the semantics of constantBuffer<T> for

ordinary parameters to include resource parameters as well. A pParameterBlock<T> variable
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stands for a reference to a parameter block, which may encapsulate both ordinary parameters and
resource typed parameters. Listing4.5 shows the same entry-point shader as in Listing4.4. The
difference is in line 19-21: instead of declaring global variables of type TGeometry, TMaterial
and TLight, we wrap these global variables in a ParameterBlock<T> type to explicitly specify

that these parameters come from parameter blocks.

ParameterBlock<T> is an abstract concept that maps to different implementations on differ-
ent target platforms: on Direct3D 12, it maps to a descriptor table that has one constant buffer
entry to a constant buffer that stores all the ordinary typed fields of T, and one shader resource
view or unordered access view entry for each resource typed field of T. On Vulkan, it maps to
a descriptor set with similar layout - a uniform buffer entry for all the ordinary type fields, and
one entry for each resource typed field. ParameterBlock<T> can also be compiled to legacy Di-
rect3D 11/ OpenGL platforms as well. On these platforms, a ParameterBlock<T> behaves like
a ContantBuffer<T> - it encapsulates all ordinary fields in a constant buffer, and separates out
each resource typed fields and assign them a global binding index, which can be queried through
the introspection API. On all platforms, Slang will not attempt to eliminate unused parameters
before assigning binding indices, or removing them from reflection information. This guarantees
that the layout of a parameter block is the same across all shader variants that uses the parameter
block, so that the shading system can safely reused a parameter block for all shader variants that

requires it.

4.2.4 Associated types as interface requirement

Some shading features involve computations that needs to be done in multiple stages. For exam-
ple, the following code illustrates the invocation of two-stage task:

void runTask<Task : ITwoStageTask> (Task t)

{
int inputDatal[N];

// do first stage and store partial results in context
Context context = t.doStagel();

int rs = 0;
// do second stage once for each input
for (int 1 = 0; 1 < N; 1i++)

rs += t.doStage2 (context, input[il]);

In this example, t represents a task that needs to be done in two stages. The runTask function in-
vokes the first stage to perform some initial computation and stores the partial result in context.

runTask then invokes the second stage dostage2 method for each input element, which reuses
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interface ITwoStageTask
{
associatedtype Context;
Context doStagel();
int doStage2 (Context ctx, int element);

Listing 4.6: Defining an associated type in a Slang interface.

the partial result computed in the first stage. The problem is how to define the 1TwoStageTask

interface?

We can start by defining the TTwoStageTask interface as following:

interface ITwoStageTask
{
Context doStagel();
int doStage2 (Context ctx, int element);

This definition restricts all implementations of ITwoStageTask to store its partial results in
a concrete type context. However, different implementations may compute different terms for
the partial result, thus would return a different type as context. In fact, runTask function do not
even need to know the concrete type of context, it is treating context as an opaque object and

passing it directly from stage 1 to stage 2.

To enable defining such an interface without restricting all implementations to use a common
Ccontext type, Slang allows an interface to define associated type requirements in addition to
method requirements. Listing 4.6 shows the definition of 1TwoStageTask that uses an associated
type. The declaration in line 3 states that in order for a concrete type to satisfy the requirement
of ITwoStageTask, it must provide a type definition Context, such that the dostagel method

returns Context and dostage2 method takes context as the first argument.

Listing4.7 shows an actual concrete type implementing the I1TwoStageTask interface. To
satisfy the associatedtype requirement, ATwoStageTask type defines a nested struct type
named context. Alternatively, the associatedtype requirement can be satisfied via a nested

typedef clause, as shown in Listing 4.8.

With associated types, we can now use ITwoStageTask.Context to refer to the context type
of ITwoStageTask in runTask when declaring the context variable:

void runTask<Task : ITwoStageTask> (Task t)

{
int inputDatal[N];

// do first stage and store partial results in context
Task.Context context = t.doStagel();
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struct ATwoStageTask : ITwoStageTask

{

struct Context

{
int x;

bi

Context doStagel ()

{
Context rs;
rs.x = 5;
return rs;

}

int doStage2 (Context ctx, int element)

{

return element % element + ctx.x;

Listing 4.7: Implementing associated type requirement in a concrete type.

// the context type for ATwoStageTask
struct ATwoStageTaskContext

{

bi

int x;

struct ATwoStageTask : ITwoStageTask

{

// indicate that we are using ATwoStageTaskContext as the associated Context type.

typedef ATwoStageTaskContext Context;

Context doStagel ()
{
ATwoStageTaskContext rs;
rs.x = 5;
return rs;
}
int doStage2 (Context ctx, int element)

{

return element % element + ctx.x;

Listing 4.8: Implementing associated type requirement in a concrete type.
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interface IMaterial

{
associatedtype Pattern;
Pattern evalPattern(...);
float4 evalReflectance (Pattern p, LightSample light, float3 wviewDir);

}i

float4 evalAppearance<TMaterial : IMaterial> (TMaterial mat, LightSample lights[])

{
float4 result = 0.0;
TMaterial.Pattern pattern = mat.evalPattern(...);
for (int i = 0; 1 < lights.size; 1i++)
result += mat.evalReflectance (mat, lights[i], viewDir);
return result;

Listing 4.9: Interface definition for materials. Surface appearance is evaluated in two stages.
Stage 1 invokes the evalSurfacePattern method and store the surface pattern result in a
Pattern variable. Stage 2 invokes evalReflectance method for each incident light sample,
given the surface pattern evaluated in stage 1.

int rs = 0;
// do second stage once for each input
for (int 1 = 0; i < N; i++)

rs += t.doStage2 (context, input[il]);

A typical example of this two stage pattern is the evaluation of materials. Generally, the
appearance of an object is computed in two steps: evaluating the surface pattern (parameters to
a BRDF) at a shading location and accumulating the lighting result (by evaluating the BRDF for
each incoming light sample). Conceptually, a material defines both the surface pattern (which is
inherent to the surface and invariant to lighting environment), and the BRDF (which evaluates
reflectance from an incident light sample). Therefore, evaluation of surface appearance is a two-
stage process: stage 1 evaluates the surface pattern, and stage 2 evaluates lighting for each light
sample, using the same surface pattern as input to the BRDF.

Listing 4.9 shows a possible 1Material interface definition. The evalappearance function
(line 8) demonstrates the two-stage process of evaluating surface appearance given a material
and an array of light samples. First, it invokes IMaterial.evalPattern method to evaluate
the surface pattern, whose result is stored in the pattern variable. The type of pattern is an
associated type of I1Material, which stands for a placeholder for a concrete surface pattern type.
In the second stage, evalappearance function loops over the array of light samples and call
evalReflectance for each light sample, reusing the surface pattern evaluated in stage 1 and

accumulate lighting result into result.
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An alternative to associated types for defining multi-stage tasks is to make ITwoStageTask a
generic interface, and expose the context type as a generic parameter:

interface ITwoStageTask<TContext>

{
TContext doStagel();
int doStage2 (Context ctx, int element);

A concrete type then implements a specialized 1TwoStageTask interface:

struct ATwoStageTask : ITwoStageTask<ATwoStageTaskContext>
{

ATwoStageTaskContext doStagel() { ... }

int doStage2 (ATwoStageTaskContext context, int element) { ... }
bi

Because ITwostageTask is a generic interface, the runTask function also need to include a
generic parameter for the context type:
void runTask<TContext, Task: ITwoStageTask<TContext>>(Task t)

{

TContext context = t.doStagel();

As we can see, when using generic interfaces, the context type becomes a generic parameter that
propagates to the use site of the interface. Furthermore, any use site of runTask function would
also become a generic function with a additional TCcontext generic parameter. In contrast, the
use of associated type results much cleaner code: it contains the type dependency within the
interface definition and prevents the declaration of the TContext generic parameter to propagate

into the use sites of the interface.

4.2.5 Global generic parameters

As described in section 4.2.1, Slang allows defining generic functions and generic struct types.
To implement the shader components design, a shader entry-point is represented as a generic
struct that wraps both the shader parameters and the kernel functions. This is a non-trivial change
from how shader are authored in HLSL, where kernel functions and shader parameters are all
defined in global scope. To support an incremental adopt path of existing HLSL shader code,
Slang allows defining generic parameters for the global scope, as shown in Listing 4.10.

Line 4-6 defines three global generic parameters for the shader program: TGeometry, TMaterial
and TLight. For each generic type parameter, we declare a global variable of that type in Line

8-10 to represent the parameters required by each type of shader component. The genericparam
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struct InputVertex {...};
struct VertexOutput {...};

genericparam TGeometry : IGeometry;
genericparam TMaterial : IMaterial;
genericparam TLight : ILight;
ParameterBlock<TGeometry> geom;
ParameterBlock<TMaterial> material;

ParameterBlock<TLight> light;

VertexOutput vertexShader (InputVertex vertIn)
{

}

float4 fragmentShader (VertexOutput vsIn)
{

}

Listing 4.10: Example of global generics parameters in Slang.

declarations in global scope turns the entire shader program into a generic program that needs to
be specialized in order to generate executable shader code.

Global generic parameters can be thought of a syntax sugar to wrapping everything in global
scope into a generic struct. For example, Listing 4.2 is semantically equivalent to Listing 4.10.

With this feature, developers that wish to adopt the shader components idea can simply add
genericparam declarations to their shader code and keep most of the existing code structure
unchanged. As we will discuss in section 4.3, the shading system can continue to view a shader
program as a collection of parameter declarations and kernel function definitions when the code
is using global generic parameters, so many existing shading system logic interacting with the

shader reflection API can also stay unchanged.

4.3 Introspection API

In this section, we will discuss the design of Slang’s shader introspection API, that is used by
the shading system to prepare parameter data for CPU-GPU communication and to generate

specialized shader variants. We will discuss why this new API design reduces CPU overhead.
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Chapter 5

Implementing Shader Components in
Slang (Proposed Work)

In this chapter, we present an example shading system that implements the shader component

design using Slang. This section breaks down into following subsections:

5.0.1 Authoring modular shading features.

Introduces how the shading features of our example shading system is implemented in Slang as

individual modules, and how they are composed together to form a complete shader program.

5.0.2 Creating component instances using the introspection API.

Discusses how the shading system implements component instances at run time and use it as

means to specify what shader code to run, as well as the shader parameter values to use.

5.0.3 Composing and selection of shader variants from entry point and

components.

Discusses the implementation of a shader variants cache, which is used to store and lookup
specialized shader variants with small CPU overhead.
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5.0.4 Using de-specialized components.

Discusses how the shading system switches between different decisions of whether to use spe-

cialization or dynamic dispatch for certain categories of shading features.
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Chapter 6

A Case Study of Adopting Shader
Components and Slang (Proposed Work)

In this chapter, we will share our experiences in adopting Slang in a research renderer called
Falcor. We report our changes made to Falcor as a result of the adoption, and evaluate the

performance and modularity properties of the refactored code-base.

This chapter will include following sections.

6.1 Falcor Introduction

Introducing the features and goals of Falcor, and its current implementation of shader specializa-

tion and parameter communication.

6.2 The Refactored Shader Library.

Present the decisions we made, and the resulting refactored shader library framework.

6.3 Material Specialization

Discuss how we refacator the material system in Falcor to properly generate specialized shader

variants for different configurations of materials.
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6.4 Retrospection

Discuss the other findings as a result of this case study. One most notable observation is that
we find our refacatored system is producing surprisingly low number of shader variants, which
makes massive shader precompilation tooling that once thought as important in improving com-

pilation time irrelavent.

Discuss how Slang makes it easier to implement systems like Bungies’s TFX shading sys-
tem[12].
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Chapter 7

Relation to Previous Work (Proposed
Work)

7.1 Language Constructs for Shader Modularity

Discuss relationship to modular constructs in prior shading language work, such as Cg inter-
faces [10], HLSL classes [7], GLSL subroutines [5].

7.2 Relationship to alternate rate-based solutions

We published several papers on shading languages that uses a rate-based type system[1, 2, 3].
We discuss why we’ve gone a different direction for Slang. We prove that the most important
features of a rate-based type system has its correspondence in Slang. In some places it is not as
elegant as in a rate-based type system, but the language mechanisms in Slang is more general
and accessible to developers who are not aware of rate-based programming. We discuss why
we dropped the exploration of choices as introduced by He et al. [3] - they do not scale with

modularity, and most interesting choices lies in the entry point shader which is not hard to write.

57



December 2, 2017
DRAFT

58



Chapter 8
Timeline

December 2017 Finish implementation of key Slang language features.
January 2018 Complete the case study of integrating Slang into Falcor.

February 2018 Implement an example shading system to demonstrate the shader components

design using Slang.

March 2018 - May 2018 Fix compiler issues and implement any remaining features that are

found to be useful during evaluation.

March 2018 - June 2018 Finish thesis writing and defense.
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