
Extending the Graphics Pipeline with Adaptive, Multi-Rate Shading

Yong He Yan Gu Kayvon Fatahalian
Carnegie Mellon University

Abstract

Due to complex shaders and high-resolution displays (particularly
on mobile graphics platforms), fragment shading often dominates
the cost of rendering in games. To improve the efficiency of shad-
ing on GPUs, we extend the graphics pipeline to natively support
techniques that adaptively sample components of the shading func-
tion more sparsely than per-pixel rates. We perform an extensive
study of the challenges of integrating adaptive, multi-rate shading
into the graphics pipeline, and evaluate two- and three-rate imple-
mentations that we believe are practical evolutions of modern GPU
designs. We design new shading language abstractions that sim-
plify development of shaders for this system, and design adaptive
techniques that use these mechanisms to reduce the number of in-
structions performed during shading by more than a factor of three
while maintaining high image quality.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture—Graphics Processors

Keywords: GPU architecture, graphics pipelines, shading

Links: DL PDF

1 Introduction

Per-fragment shading computations dominate the cost of render-
ing in many modern games. For example, high-end “AAA” titles
employ expensive fragment shaders that implement complex mate-
rial and lighting models needed to represent realistic scenes. Con-
versely, casual 2D and 3D games employ simple shaders, but these
applications feature commensurately low geometric complexity and
are typically enjoyed on resource-constrained mobile devices with
high-resolution displays. Indeed, today’s highest-resolution tablets
require mobile GPUs to synthesize sharp, four-megapixel images
(more pixels than most modern 27-inch desktop displays) using a
power budget of only a few watts. Under these conditions, shad-
ing computations constitute nearly 95% of the processing cost of
modern OpenGL ES applications [Shebanow 2013].

Traditionally, real-time graphics systems have favored simple,
“brute-force” techniques amenable to parallelization or acceleration
via specialized hardware. This approach was justified by the ben-
efits of performance predictability and continual performance im-
provement through additional GPU processing resources. However,
energy constraints (now omnipresent for both high-end and mobile
devices) make it increasingly difficult to rely on rapid growth in

compute capability as a primary mechanism for improving the qual-
ity of real-time graphics. Simply put, to scale to more advanced
rendering effects and to high-resolution outputs, future GPUs must
adopt techniques that perform shading calculations more efficiently
than the brute-force approaches used today.

In this paper, we enable high-quality shading at reduced cost on
GPUs by extending the graphics pipeline’s fragment shading stage
to natively support techniques that adaptively sample aspects of the
shading function more sparsely than per-pixel rates. Specifically,
our extensions allow different components of the pipeline’s shad-
ing function to be evaluated at different screen-space rates and pro-
vide mechanisms for shader programs to dynamically determine (at
fine screen granularity) which computations to perform at which
rates. We perform an extensive study of the challenges of inte-
grating adaptive, multi-rate shading into the graphics pipeline by
evaluating two- and three-rate implementations that we believe are
plausible evolutions of modern GPU designs. We then present new
shading language abstractions that simplify development of shaders
for this system. Last, we describe adaptive shading techniques that
utilize the proposed mechanisms to reduce the number of instruc-
tions performed by the graphics pipeline during shading by more
than a factor of three while also maintaining high visual quality.

2 Background

Limiting the cost of shading in real-time rendering applications is a
central challenge for both graphics application developers and GPU
architects. One way to reduce the cost of shading is to simplify the
shading function itself, for example, through manual design of ef-
ficient approximations to material and lighting models, by precom-
puting common sub-computations (often involving prefiltering of
values in precomputed structures), sharing sampling results within
a quad fragment via differential instructions [Penner 2011], or via
automatic compiler optimization [Guenter et al. 1995; Olano et al.
2003; Pellacini 2005; Sitthi-Amorn et al. 2011].

A complementary strategy is to reduce the number of times the
fragment shading function is invoked during rendering. For ex-
ample, all modern GPUs attempt to eliminate shader invocations
for occluded surfaces via early-Z cull mechanisms. GPUs also re-
duce the number of shader invocations by reusing a single shad-
ing result for multiple coverage samples in a pixel (multi-sampling
anti-aliasing) [Akeley 1993] and by sharing shader intermediate re-
sults across neighboring fragments to compute derivatives. Tech-
niques such as quad-fragment merging exploit spatial coherence
even more aggressively by sharing shading computations between
adjacent mesh triangles [Fatahalian et al. 2010]. In addition, an in-
creasing number of games also exploit temporal coherence of shad-
ing by reusing shading results from the previous frame via repro-
jection [Scherzer et al. 2012; NVI 2013]. Our work also seeks to
reduce shading costs by evaluating the shading function less often,
but we pursue this goal by architecting first-class pipeline support
for adaptively sampling components of the shading function (e.g.,
terms with low screen-space variation) at lower than per-fragment
rates. Thus our contributions are orthogonal and complimentary to
the above approaches.

Multi-rate (or “mixed-resolution”) rendering techniques are already
employed by today’s high-end game engines to reduce shading

http://doi.acm.org/10.1145/2601097.2601105
http://portal.acm.org/ft_gateway.cfm?id=2601105&type=pdf

Four coarse fragments

Rast Fine
Fragment

Coarse
Fragment

12 fine fragments

Triangle attributes

coarse values
+ adaptive refinement flags

Coverage in
4x4-pixel region

Input triangle

Resample

Adaptive, Multi-Rate Shading Pipeline (COARSE2X2 configuration)

Figure 1: The multi-rate shading pipeline rasterizes triangles into coarse fragments that correspond to multiple pixels of coverage (here:
2×2 pixels). Coarse fragments are shaded, then partitioned into fine fragments for subsequent per-pixel shading. If the coarse fragment
shader determines an effect should not be evaluated at low sampling rates, these computations are performed in the fine shading stage.

costs on current GPUs, but they are implemented as an application
software layer above the graphics pipeline using multi-pass render-
ing. While many variants exist [Yang et al. 2008], the most com-
mon implementations are based on deferred shading [Kircher and
Lawrance 2009; Tatarchuk et al. 2013]. The basic process is to use
the traditional GPU pipeline to generate a low-resolution G-buffer
(e.g., 1/4 screen resolution) as input for a low-resolution deferred
shading pass. This pass evaluates low-frequency terms of the shad-
ing function for all G-buffer samples, resulting in a sparse screen-
space sampling these terms. Many lighting computations are at-
tractive to perform in this low-resolution pass due to their high cost
and slow screen-space variation. Then, a second shading pass up-
samples the low-resolution shading results and uses them as input
(along with a traditional, full-screen resolution G-buffer) for final
per-pixel shading computations.

Although implementing multi-pass, mixed resolution rendering on
top of the existing GPU pipeline can be an effective way to lower
shading costs, the approach suffers from a number of drawbacks:
First, to avoid artifacts caused by resampling coarse shading re-
sults onto the wrong surface, upsampling must respect geometric
discontinuities. Implementations typically employ a cross-bilateral
upsampling filter (e.g., using surface ids, depth, normals as inputs)
to minimize interpolation across discontinuities [Yang et al. 2008],
but artifacts still remain. Errors due to resampling can be particu-
larly troublesome when rendering fine-scale geometry, which may
not be sampled at all in the low-resolution buffer. A second draw-
back is that implementations built upon current GPU capabilities
statically partition the shading function into low and high-frequency
terms. They do not attempt to adapt shading rate based on need. As
a result, implementations either accept loss of quality due to under-
sampling (e.g., low-resolution lighting calculations fail to capture
sharp shadows), or must be conservative in their choice of which
shading terms to evaluate sparsely. Building adaptive shading on
top of existing pipeline mechanisms [Nichols et al. 2010] introduces
significant rendering engine complexity and incurs multi-pass over-
head. We do not view it as a practical, efficient solution and to our
knowledge it is not commonly implemented in games.

Thus, we believe there are strong reasons to integrate multi-rate
shading more tightly into the GPU graphics pipeline. They include:

• Multi-rate shading in a single forward rendering pass. For-
ward rendering remains an important rendering strategy and
would benefit from multi-rate shading optimizations. More-
over, single-pass forward rendering removes the need for
heuristic edge-finding during upsampling.

• Adaptivity. Our experiences show that value of multi-rate
shading is far greater if shaders can adaptively choose sam-
pling rates at runtime.

• Convenience, portability, and performance. Existing games
provide ample evidence that multi-rate shading is an effec-
tive way to reduce shading cost with minimal impact on im-

age quality. First-class pipeline and shading language support
systematizes this technique, simplifying its use in both for-
ward and deferred rendering contexts and provides opportuni-
ties for underlying GPU optimization.

3 Multi-Rate Pipeline Architecture

In this section, we introduce extensions to the graphics pipeline that
provide support for performing adaptive, multi-rate shading in a
single draw operation. We first describe the basic system architec-
ture as well as key details of several prototype implementations.
We provide examples of the system’s use in Section 4, and defer
description of how to target the features of this architecture in a
high-level shading language to Section 5.

Our proposed multi-rate shading pipeline, shown in Figure 1, par-
titions execution of post-rasterization (and optionally post-z-cull)
screen-space shading operations into two stages: fine fragment op-
erations, like traditional fragment processing, are executed once per
covered pixel; and coarse fragment operations, which occur prior
to fine fragment shading and are executed at a lower rate. To sim-
plify explanation, Figure 1 illustrates a specific pipeline configura-
tion where the coarse fragment shading stage samples shading once
per 2×2-pixel region. We will describe more complex configura-
tions of coarse fragment processing in Section 3.1.

As shown in the figure, the rasterizer first computes triangle-screen
coverage then generates coarse fragments for shading (coverage for
a 4×4-pixel region is shown in gray). To support derivative compu-
tations during coarse shading computations, coarse fragments are
always shaded in blocks of four. As a result, if any visibility sam-
ple in a 4×4-pixel region is covered by the triangle, a block of
four coarse fragments will be emitted for shading (shown in red).
Following coarse fragment processing, coarse fragments are parti-
tioned into fine fragments. Blocks of fine fragments are only gen-
erated if coverage exists for the corresponding 2×2-pixel region.
Thus, the multi-rate pipeline never shades more fine fragments than
a traditional pipeline. In the figure, the block of four coarse frag-
ments is broken into three blocks of coarse fragments (twelve fine
fragments in total—shown in blue) because the triangle does not
cover the bottom-left 2×2-pixel region.

Figure 2 provides HLSL-like pseudocode for a coarse fragment
shader (coarse shader) that computes diffuse and specular
lighting and a fine fragment shader (fine shader) that modu-
lates the coarsely computed lighting results with the results of per-
pixel samples from an albedo texture. Notice that in the multi-rate
shading pipeline, there are two sources of varying inputs to the
fine fragment shader program: values computed by coarse frag-
ment shading and then resampled to fine fragment shading sam-
ple positions (coarse), and input triangle attributes (attribs)
that are evaluated using triangle attribute equations computed dur-
ing rasterization. This design is similar to how the pipeline’s do-
main shader stage receives surface attributes from the hull shader

struct Coarse_in {
 float3 norm, vert;
};

struct Coarse_out {
 float diff, spec;
 bool spec_refine; : SV_REFINE_FLAG_0;
};

struct Fine_in {
 float3 norm, vert;
 float2 uv;
};

uniform float3 lightPos;
uniform sampler2D albedo;

Course_out coarse_shader(Coarse_in in)
{
 Course_out result;

result.spec_refine = false;
result.diff = diff_lighting(in.norm, in.vert, lightPos);
result.spec = spec_lighting(in.norm, in.vert, lightPos);

 // determine if refinement is necessary
if (fwidth(result.spec) > THRESHOLD)
result.spec_refine = true;

 return result;
}

vec4 fine_shader(Fine_in attribs, Coarse_out coarse)
{
 // use coarsely sampled specular lighting or

// recompute once per pixel
 float specular = coarse.spec_refine ?

spec_lighting(attribs.norm, attribs.vert, lightPos) :
 coarse.spec;
 float lighting = coarse.diff + specular;
 return texture(albedo, attribs.uv) * lighting;
}

Figure 2: HLSL-like pseudocode for coarse and fine fragment
shaders that cooperate to evaluate diffuse lighting coarsely, sur-
face albedo once per pixel, and specular lighting adaptively based
on need. (Subroutines diff lighting and spec lighting
evaluate diffuse and specular lighting terms accordingly.)

and vertex parametric locations from the tessellator. It avoids the
need for applications to “plumb” fine attributes through the coarse
shading stage. More importantly, the design ensures all triangle at-
tributes are available at full precision to the fine fragment process-
ing stage regardless of coarse stage operation. (They do not incur
coarse-to-fine resampling error.)

In the pseudocode, coarse shader and fine shader coop-
erate to dynamically adjust the rate at which specular lighting is
evaluated based on local properties of the surface. In this exam-
ple, the coarse shader evaluates whether specular lighting variation
is sufficiently high within the current coarse shading block. If so,
it sets a refinement flag (spec refine) to signal the fine shader
that specular lighting should be performed at a per-pixel rate (i.e.,
resampled coarse lighting results may yield artifacts and should be
ignored). Adaptive refinement flags are exposed to the pipeline as
system-interpreted values to allow for optimization, which is de-
scribed in Section 3.1 and Section 3.3.

In the following three sections we provide details of how coarse
stage shading sample locations are determined and how our proto-
type multi-stage shading pipeline is scheduled for efficiency under
wide SIMD execution.

3.1 Coarse Fragment Stage Configurations

Our prototype pipeline supports three configurations of the coarse
fragment processing stage. The configurations result in different
sampling densities for coarse shading.

COARSE2X2 sample positions

COARSE4X4 sample positions

static-center static-corner coverage-bbox
= extrapolation region for fine fragment inputs

Figure 3: Three coarse sampling modes implemented in our multi-
rate shading pipeline. Sampling positions impact the quality of re-
sampling, the likelihood of sampling shader input attributes outside
triangle boundaries, and the robustness of refinement decisions.

COARSE2X2. Coarse fragments correspond to 2×2-pixel regions
of triangle-screen coverage. The minimum granularity of coarse
fragment shading in the pipeline is an 4×4-pixel block. This is the
configuration illustrated in Figure 1.

COARSE4X4. The same as above, but coarse fragments correspond
to 4×4-pixel regions of coverage, yielding a sparser coarse stage
sampling. The minimum granularity of coarse fragment shading is
an 8×8-pixel block.

DYNAMIC4X4. The pipeline dynamically chooses between
COARSE2X2 and COARSE4X4 configuration coarse shading for
each covered 8×8-pixel block. The pipeline first generates coarse
fragments for the COARSE4X4 configuration. If coarse process-
ing sets block refinement flags, the coarse shading outputs are ig-
nored and each COARSE4X4 coarse fragment is partitioned into
COARSE2X2 coarse fragments. Then the coarse shader is re-
executed on these fragments. The DYNAMIC4X4 configuration
makes the most aggressive attempts to employ coarse shading, but
incurs the overhead of repeating evaluation of the coarse stage
shader in situations where per-pixel shading is necessary.

3.2 Coarse Fragment Stage Sampling

A straightforward implementation of coarse fragment shading eval-
uates input attributes at the center of each coarse fragment, regard-
less of triangle coverage (Figure 3-left). Coarse shading results
evaluated at these locations can then be smoothly resampled to fine
fragment stage sampling positions using bilinear filtering.

While this approach is simple, it presents two possible image-
quality issues for a multi-rate system. Resampling coarse outputs
to pixels outside the hull of the sample points requires extrapolation
of the block’s four coarse shading results, risking discontinuities at
block boundaries. (The pipeline shades coarse fragment blocks in-
dependently so coarse shading results from adjacent blocks are not
available as inputs during resampling.) Second, the static uniform
sample pattern may sample coarse shader inputs outside triangle
boundaries in cases where the triangle does not fully cover a coarse
shading block. This problem exists with traditional fragment shad-
ing, but is exacerbated by the larger extent of coarse fragments.

To understand these concerns, we implemented and evaluated two
additional approaches to selecting shading sample locations for
coarse fragments. The first places the four coarse sample locations
at the center of the corner pixels of the coarse block (static-corner:
Figure 3-center). It eliminates the need for extrapolation during

Coarse-stage
execution

Fine-stage
execution
(empty lane)

Input COARSE2X2 blocks
(with coverage)

1 2
3 4

A B

C D

E F

G H

8-wide SIMD vector mapping
time A B C D E F G H

1
2
3
4

Figure 4: Scheduling all shading work (coarse and fine) for a
coarse block of pixels to a single logical-thread of GPU control can
result in inefficient SIMD-vector execution when coarse fragments
are not completely covered by a triangle (left, coverage shown in
gray). The resulting SIMD lane utilization is shown at right.

resampling at the cost of non-uniform sampling of coarse shading
values (decreasing the effective sampling rate of coarse shading).

The final scheme, sample locations are placed in the corners of a
bounding box of the triangle (coverage-bbox: Figure 3-right). This
coverage-dependent pattern is an efficient approximation to cen-
troid sampling patterns already present in GPUs. It reduces input
attribute extrapolation error (unlike centroid sampling, it does not
completely eliminate it), but facilitates simple resampling via bilin-
ear interpolation from the axis-aligned sample positions.

Small-triangle optimization. In all three schemes, if triangle cov-
erage is contained within a 2×2-pixel region of a coarse block, the
pipeline evaluates coarse shading at pixel centers of the covered
2×2 block, just as in traditional quad-fragment shading. Coarse
shaders should not set refinement flags in this case, as coarse shad-
ing results are the same as those of traditional fragment shading.

3.3 Pipeline Scheduling

An evolutionary approach to scheduling multi-rate shading com-
putations is to implement all multi-rate shading logic (both coarse
and fine) in a single logical GPU thread (vector lane) of control. In
such a design, a GPU would execute logic for a coarse fragment
then immediately compute fine stage shading for all correspond-
ing fine fragments in sequence. (This implementation is similar
to efforts to implement multi-sample anti-aliasing in deferred ren-
derers [Lauritzen 2010].) While conceptually simple, this approach
can suffer from inefficient execution on a wide SIMD processing
architecture for two reasons. First, as illustrated in Figure 4, exe-
cuting a SIMD-vector sized group of coarse fragments together will
suffer execution divergence in situations of partial coverage, since
coarse fragments will partition into different numbers of fine frag-
ments. (The effective granularity of fine shading is now the coarse
block, not 2×2-block of pixels.) Second, since more fine shader
instances (up to 16 times more in COARSE4X4 mode) now map to
each SIMD group, the likelihood of execution divergence (e.g., due
to differences in refinement decisions in this group) is greater.

We seek hardware-optimized implementations of adaptive, multi-
rate shading, so our prototype instead separates scheduling of
coarse and fine shading tasks, and uses inter-stage buffering to
coalesce work in SIMD-vector sized groups for efficient execu-
tion. Specifically, for a SIMD width of size N , our implementation
schedules a batch of N/4 coarse shading blocks in a SIMD group.
When execution is complete, the coarse blocks are partitioned into
fine fragment blocks and buffered for fine fragment stage process-
ing. The system then dispatches fine shading work in groups of
N/4 blocks from this buffer. When fine fragments in a SIMD group
receive different refinement flags, divergent execution will occur
since different execution sequences are necessary in the fine frag-
ment shader. To reduce divergence due to adaptive shading, prior
to dispatch, an optional optimization is to inspect the refinement
flags of each coarse block and sort buffered fine fragment blocks

according to these flags. (We note that an integer sort of elements
stored in fixed-sized, on-chip buffers is also proposed by Clarberg
et al. [2013] to improve pipeline efficiency.)

Scheduling DYNAMIC4X4 mode execution is more complex. The
system maintains buffers for both fine fragments (as done above)
and COARSE2X2 mode coarse fragments (coarse stage work to be
re-executed). After initial COARSE4X4-mode shading is complete,
coarse fragment blocks with no refinement flags set are partitioned
into fine fragment blocks and enqueued as described above. Blocks
with refinement flags set are broken into COARSE2X2 fragment
blocks and buffered for COARSE2X2 mode shading.

The ability to efficiently execute multi-rate shaders on a highly par-
allel architecture is primarily limited by the storage costs of buffer-
ing. The system must maintain visibility coverage information for
entire coarse blocks (64 pixels in COARSE4X4 operation) and must
allocate on-chip storage to buffer coarse-to-fine stage intermedi-
ate values. However, in our experiments, inter-stage intermediates
are often compact (three floats for the shaders evaluated in Sec-
tion 6). Second, rather than directly store resampled intermediates
at fine fragment granularity, optimized implementations (particu-
larly COARSE4X4 configurations) should instead buffer the coarse
fragment outputs and perform resampling to fine sample locations
on demand in the fine shader (similar to how modern GPUs inter-
polate triangle attributes on-demand from per-triangle data).

4 Adaptive Shader Examples

To enable use of the multi-rate pipeline mechanisms discussed in
Section 3, we now describe techniques for robustly and inexpen-
sively determining when shading effects can be accurately evalu-
ated in the coarse fragment stage.

4.1 Diffuse and Specular Lighting

Diffuse Lighting. Diffuse lighting can sometimes be evaluated
with sufficient accuracy in the coarse shader without the need
for adaptive shading (an approximation made by current games).
However, near the silhouettes of curved objects there can be wide
variation in interpolated normals across a triangle (particularly
when coarse shading sample positions lie outside projected trian-
gle boundaries), leading to large variation in diffuse lighting. Large
screen-space derivative of N · L is a sufficient signal to detect this
case, and we use it to make a refinement decision. Since N · L
must be computed as part of lighting evaluation, the overhead of
this adaptivity check is minimal.

Specular Lighting. Reflectance from specular surfaces may
change rapidly with small variations in normal, so a simple way
to implement an adaptivity decision is to use a surface flatness test
(normal difference) with a low refinement threshold. The problem
with this approach is that the flatness threshold must be conserva-
tively set avoid undersampling near highlight regions. This results
in a decision to evaluate specular lighting in the fine shader for
many regions of the surface, even if these regions are located far
from highlights and feature low screen-space variation in specular
reflectance. For example, specular lighting is unnecessarily eval-
uated at per-pixel rates on the chin region of the Ogre character
in Figure 5 when a flatness heuristic is used (see heat map, top-
center). To reduce unnecessary refinement due to specular lighting,
the adaptive shader must determine if a surface region also lies near
a specular highlight. We assume a specular BRDF whose magni-
tude varies slowly when the lighting vector is oriented at a large
angle to the view reflection direction (a typical condition for spec-
ular BRDFs), making coarse specular lighting evaluation sufficient
in these situations. We detect these cases by estimating a bound

COARSE4x4 only

Highlight detection
adaptive

Reference (per-pixel only)

Surface flatness
adaptive

DYNAMIC4X4 adaptive

fine-stage shading
COARSE2X2 shading
COARSE4X4 shading

Figure 5: Bottom: Near highlight regions, it is insufficient to eval-
uate specular lighting at coarse rates (left). Adaptive techniques
(center) are necessary to closely approximate the reference shading
result (right). Top: Accounting for the specular highlight position
in refinement decisions (right) can avoid avoid unnecessary refine-
ments triggered by a basic flatness heuristic (center). Heat maps
visualize specular refinements during DYNAMIC4X4 mode shading.

L
R2

R1

R3

R4

Ravgview

Figure 6: Specular reflectance may vary significantly in a coarse
block if the orientation of the lighting vector L falls in or near the
bounding cone of directions formed by a coarse block’s reflection
vectors Ri.

for the reflection vectors for a coarse block, and then compute the
minimum angle of the lighting vector L with this bound.

As shown in Figure 6 we assume that the light source is sufficiently
far from the surface that the lighting vector L can be treated as a
constant for the block, reducing the problem to finding the distance
between L and the bounding cone of the coarse block’s four re-
flection vectors Ri. If the bounding cone contains L, the coarse
shading block samples near the peak of specular highlight. We ap-
proximate this condition by testing if, for any coarse sample:

L ·Ravg ≤ λ (Ri ·Ravg)

Ravg is the axis of the bounding cone computed as the average of
the four Ri. The parameter λ is chosen according to the known
spread of the BRDF, effectively enlarging the cone so that refine-
ment will occur when the shading the coarse block samples the
BRDF in regions of high variation. The cost of this predicate is
computing the average reflection direction Ravg for a block and

fine shading COARSE2X2 shading COARSE4X4 shading

Coarse onlyReference

DYNAMIC4X4 (difference check) DYNAMIC4X4 (edge receiver check)

Figure 7: By precomputing the location of shadow edge receivers
in the scene, we are able to robustly determine when a shadow edge
may fall between coarse shading samples, avoiding artifacts.

// compute light-space depth range of block
block_range = [min(lightspace_frag_z), max(lightspace_frag_z)];
refinement_range = texture(edge_receiver_map, shadow_coord);
if (block_range overlaps refinement_range)

refine;

// evaluate shadow effect
shadow_factor = compute_shadow(shadow_map, shadow_coord);
// final refinement check
if (fwidth(shadow_factor) > THRESHOLD)

refine;

z0
z1

z2

z2/z2z1/z1z0/z0

z0 / z0 z1 / z1 z2 / z2

z2 / z1z0 / z0

z2 / z1

Edge receiver depth range (min/max)

z0/z0 z1/z1 z2/z2

Pseudocode: edge-receiver aware adaptive shadow shader

E(x,y)

Figure 8: Top: red dots indicate surface points upon which a
shadow edge may fall. The resulting receiver min-max hierarchy
represents these regions for rapid lookup in shaders. Bottom: pseu-
docode for the complete adaptive shadow shader. The subroutine
compute shadow performs the actual occlusion computation.

two dot products. The reflection directions Ri are already required
to evaluate lighting.

4.2 Shadow Mapping

Shadows are a compelling candidate for adaptive rate shading be-
cause high frequencies are only present near shadow boundaries.
Also, popular shadowing techniques (e.g., percentage closer fil-
tering [Reeves et al. 1987]) often require multiple samples from a
shadow map and have high compute and bandwidth cost. Thus,
the main challenge of efficiently evaluating shadows in an adap-
tive pipeline is determining whether the surface region spanned by
a coarse block receives a shadow edge. Sampling light occlusion
at each coarse sample location, then checking for large differences
in occlusion results is insufficient since coarse sampling may miss
shadow detail falling in between coarse samples (Figure 7, bottom-
left). This problem is particularly severe when coarse shading is
evaluated once per 4×4-pixel block.

To robustly detect cases where shadow detail lies between coarse
samples we analyze the shadow map to find scene regions that can
potentially receive shadow edges. Figure 8 illustrates a simple ge-
ometry setup yielding a shadow map with depth samples indicated
by dots. We detect edge pixels in the shadow map by computing
the second derivative of depth at each pixel, and then identify pix-
els with large negative secondary depth derivative values. These
shadow map pixels, highlighted in red in the figure, correspond to
scene surfaces that are shadow edge receivers. Pixels with large
positive second derivative (blue dots) lie on the other side of the
shadow map edge and correspond to surfaces that will not receive
shadows. Specifically, we encode edge receiving regions in a binary
“edge receiver map” defined as:

E(x, y) = max

(
− ∂2

∂x2
Z(x, y),− ∂2

∂y2
Z(x, y)

)
≥ δ

Where Z(x, y) gives the depth value at shadow map pixel (x, y).
Note that the edge receiver map is not a representation of shadow
map edges, it is a representation of scene regions that these edges
will cast shadows on. Using the edge receiver map we build a
min-max hierarchy that maintains, for each shadow map ray, a con-
servative depth range of scene regions that may receive a shadow
edge (Figure 8 top-right). To avoid artifacts due to undersampling
shadow edges, we will not perform shadow calculations at a coarse
rate for any surface lying within these regions. We initialize the
base level (Z0

min and Z0
max) of the receiver min-max hierarchy from

the shadow map and edge receiver map as given below, then gener-
ate the remaining levels of the min-max hierarchy.

Z0
min(x, y) =

{
Z(x, y) : E(x, y) = 1
+∞ : E(x, y) = 0

Z0
max(x, y) =

{
Z(x, y) : E(x, y) = 1
−∞ : E(x, y) = 0

As given by the pseudocode in the bottom half of Figure 8, the
coarse shader accesses the receiver min-max map to determine if
the light-space depth bounds of the current coarse block overlap
with the range of potential shadow edge receivers. If overlap ex-
ists, a shadow edge may fall on the surface within this block and
so shadow computations should be performed in the fine fragment
shader. If the block does not fall in an edge-receiving region, the
coarse shader proceeds to compute light occlusion using the shadow
map. Since this predicate is based on the receiver min-max hierar-
chy, it is applicable to many forms of shadow mapping techniques,
such as variance shadow maps [Donnelly and Lauritzen 2006] and
exponential shadow maps [Annen et al. 2008]. Since the shadowing
method itself may introduce (smooth) variation across the block, we
complete the adaptive coarse shadow effect with a difference check
of the coarse block’s four occlusion values.

The overhead of constructing the edge receiver hierarchy is small
since a shadow map prefiltering pass is commonly performed by
shadowing techniques. Moreover, since Zmin and Zmax define a
conservative range, to reduce the bandwidth overhead of predicate
evaluation, these values can be stored at low precision and packed
into a 32-bit word. One further optimization (which we omit from
the Figure 8 pseudocode for clarity) is to detect when the shadow
map texture footprint for an entire coarse block is contained within
a 2×2-texel region of the base-level shadow map. In this case, all
shadow map lookups during coarse shading access the same shadow
texels. Thus, no shadow edges fall between these samples and it
is unnecessary to use the receiver min-max map for refinement.
This optimization can significantly reduce refinements in situations
where shadow maps are undersized for the current view.

4.3 Motion Blur

Recent work has considered adaptively decreasing shading rate un-
der conditions of motion or defocus blur since the blurring effect
removes frequency content from the image. While most prior ef-
forts anticipated future pipelines with stochastic rasterization sup-
port [Ragan-Kelley et al. 2011; Vaidyanathan et al. 2012; Liktor and
Dachsbacher 2012], adaptive multi-rate shading provides a mecha-
nism to perform similar optimizations when blur effects are approx-
imated by popular screen-space post processing techniques (com-
mon in current games). For example, it is simple to implement
predicates that inspect the motion vectors of a surface and then con-
ditionally execute large parts of the shading function in the coarse
shader when blur is estimated to be large. We report on our ex-
periences with adaptive shading under conditions of post-process
motion blur in Section 6.4.

5 Adaptive Shading Language

Multi-rate shading increases the complexity of authoring shaders.
Defining shading effects for the multi-rate pipeline described in
Section 3 using a one-program-per-stage programming model (as
in Figure 2) is possible, but it requires programmers to produce
both coarse and fine fragment shaders and also marshal intermedi-
ate values between these stages. Adaptivity uniquely adds further
complexity because a single logical shading effect (e.g., specular
lighting) may be executed in either the coarse or fine fragment shad-
ing stage. This logic must be duplicated in shader programs bound
to both stages and the interface between stages must be modified to
hold intermediates and flags. This duplication can make program-
ming tedious and make shaders harder to read and maintain.

While it may seem reasonable to manage complexity by encapsu-
lating an adaptive shading effect’s logic in a subroutine called by
each stage, this is not a straightforward solution. The code in the
top half of Figure 9 shows a more complex adaptive shader that
implements the diffuse and specular lighting predicates described
in Section 4.1. The code is now dominated by managing adaptiv-
ity (e.g., setting/checking flags) and although we have attempted to
confine specular lighting logic to the subroutine spec lighting
(implementation not shown), the specular effect’s refinement flag
must still be maintained in Coarse Out. Also, since it is difficult
to separate evaluation of the specular adaptive predicate from the
computation of specular lighting itself (the predicate depends on
intermediate value R), the subroutine must evaluate the predicate
and return the result to the caller (parameter refine flag). This
complicates the subroutine interface in the fine fragment shader
when predicate evaluation is not required. Adding additional adap-
tive effects (e.g., shadows) would yield a shader that is even harder
to read and maintain.

5.1 Language Abstractions

To simplify the task of authoring efficient adaptive, multi-rate shad-
ers we believe it is desirable to raise the level of abstraction in
shader programming. Specifically, we seek to support encapsula-
tion of entire adaptive effects in simple modules and to simplify
management of adaptive behaviors. While adding rate qualifiers
(e.g., per-coarse fragment) to existing GLSL/HLSL-style shading
languages may seem like a logical way to achieve the above goals,
the interaction of rate qualifiers and data-dependent control flow in
modern shading languages creates ambiguous semantics that leads
to unpredictable compiler behavior (and thus, unpredictable shader
performance) [Foley and Hanrahan 2011]. We judged this to be a
non-starter for our needs since the sole goal of multi-rate shading
is to optimize shader performance. Instead, we pursue a declarative

struct Vertex_In {
 float3 vertex, normal;
 float3 view, light_dir;
 float2 uv;
}
struct Coarse_Out {
 float diffuse, specular;
 bool diffuse_flag : SV_REFINE_FLAG_0;
 bool specular_flag : SV_REFINE_FLAG_1;
}
float spec_lighting(Vertex_In vin, out bool refine_flag)
{ ... // may set refine_flag to true ... }
Coarse_Out coarse_shader(Vertex_In in) {
 Coarse_Out rs;

rs.diffuse_flag = rs.specular_flag = false;
 float nDotL = dot(in.normal, in.light_dir);
 if (fwidth(nDotL) > DIFFUSE_THRESHOLD) {

rs.diffuse_flag = true;
} else {

rs.diffuse = clamp(nDotL, 0.0, 1.0) * Kd + Ka;
rs.specular = spec_lighting(in, rs.specular_flag);

}
 return rs;
}
float4 fine_shader(Vertex_In vin, Coarse_Out cin) {
 if (cin.diffuse_flag) {
 float nDotL = dot(vin.normal, vin.light_dir);
 cin.diffuse = clamp(nDotL, 0.0, 1.0) * Kd + Ka;

}
 if (cin.specular_flag) {
 bool tmp_flag; // unused flag, but needed by call below
 cin.specular = spec_lighting(vin, tmp_flag);
}

 // not shown: modulate lighting by albedo from texture ...
}

in float3 vertex, normal;
in float3 view, light_dir;
in float2 uv;
uniform sampler2d texAlbedo;
coarse effect float diffuse {
 float nDotL = dot(light_dir, normal);
 if (fwidth(nDotL) > DIFFUSE_THRESHOLD) refine;

diffuse = clamp(nDotL, 0.0, 1.0) * Kd + Ka;
}
coarse effect float specular {
 if (dot(fwidth(N), fwidth(N)) < SPECULAR_THRESHOLD)
 refine;
 float3 R = reflect(view, normal);
 float rDotL = dot(R, light_dir);

specular = pow(rDotL, k);
 float3 Ravg = average(R);
 if (dot(Ravg, light_dir) < lambda * dot(Ravg, R))
 refine;
}
fine effect float4 albedo = texture(texAlbedo, uv);
out float4 color = albedo * (diffuse + specular);

Figure 9: Top: A shader implementing adaptive diffuse and spec-
ular lighting effects. Managing refinement flags and maintaining
logic across two pipeline stages can make adaptive shader pro-
gramming laborious and shaders difficult to read. Bottom: The
same shader written in our proposed declarative, effect-centric pro-
gramming language.

shading language design that draws ideas from RTSL [Proudfoot
et al. 2001] and Foley et al.’s Spark language [2011] which was mo-
tivated by many of the same cross-pipeline-stage code maintenance
issues highlighted above. However, our language describes only
programs for the fragment shading stages of our pipeline (rather
than the entire pipeline) and it includes first-class primitives for
managing adaptivity.

The main idea of our language is to structure complex shaders as
DAGs of effects. Effects encapsulate all the logic necessary to com-
pute the value of a logical feature of a shader (e.g., specular lighting

A B

C

D

Adaptive classes:
A: {A}
C: {A, B}

B C

A

D

A: {A} B: {A}
D: {A} E: {E}

E

B: {B}
D: {D}

Interface: A or B, or C

C: {A}
Adaptive classes:

Interface: D

Native adaptive

Coarse effect
Fine effect

(a) (b)

Figure 10: Two shader DAGs. Each effect’s adaptive class, and the
resulting coarse-to-fine-stage interface requirements are given.

or a shadow term). The bottom half of Figure 9 shows the pre-
vious lighting example in our effect-based language. The shader
is composed of four effects: diffuse (evaluates diffuse light-
ing), specular (evaluates specular lighting), albedo (the sur-
face albedo, obtained from texture), and color (the output color
of the shader). color depends on the other three effects.

Each effect (but not individual language statements) is annotated
with a rate qualifier that indicates which stage the effect should be
evaluated in. In our example, albedo and color are fine frag-
ment stage effects. (The out keyword indicates that color is the
final output of shading, and must be evaluated in the fine stage.)
diffuse and specular are coarse stage effects, so their evalu-
ation will first be attempted in the coarse stage.

Coarse effects can optionally determine when their evaluation at
coarse rate is insufficient for high image quality and indicate this
condition using the language’s refine statement. Notice that both
diffuse and specular reach their refine statements when
refinement conditions are met. This indicates that the effect will be
re-evaluated in the fine stage before its value can be used.

5.2 Compilation to a Multi-Stage Pipeline

Given a shader program written in this effect-based language, the
challenge is to generate optimized code for our multi-rate pipeline.
Specifically, while it is the programmer’s responsibility to partition
shading into effects and design adaptive predicates, it is the com-
piler’s responsibility to synthesize optimized coarse and fine frag-
ment shaders, manage refinement flags, and determine the required
interface between the two pipeline stages. Compact interface gener-
ation is particularly important since it has direct impact on the size
of inter-stage buffers. Our compilation process is described below.

Phase 1: adaptive class assignment. In order to determine the in-
terface between coarse and fine pipeline stages, compilation must
determine what effects will be executed in each stage. Compared to
prior work scheduling declarative shading programs, a unique chal-
lenge of our language is that the refine construct creates situa-
tions where it is not known until runtime what stage an effect may
execute in. This is particularly complicated because other effects
(even ones without refine statements) can depend on this effect,
and thus the stage of their execution is also not statically known.
We refer to all effects whose stage of execution cannot be statically
determined as adaptive effects. For clarity, we refer to adaptive ef-
fects that contain a refine statement as native adaptive effects.

The first step is to statically figure out the conditions that require
an effect to be evaluated in the fine fragment stage. The answer
is trivial for effects annotated with the fine rate qualifier, since
by definition they are always executed in the fine fragment stage.
For all other effects, fine fragment stage execution is required if
the effect’s execution reaches a refine statement or if at least

St
at

ic
-c

or
ne

r
St

at
ic

-c
en

te
r

COARSE2X2 only COARSE2X2 adapt. Shading rateReference
= fine (per-pixel) shading = COARSE2X2 shading

Figure 11: The shadow edge is severely undersampled by the
static-corner scheme (column 2-top) and error due to extrapola-
tion during resampling is clearly noticeable (see hard edge arti-
facts) when using static-center positions (column 2-bottom). When
adaptive logic is enabled, the adaptive shadow predicate triggers
refinement, yielding a high-quality result.

one of the effect’s dependencies needs to be executed in the fine
stage. For example, in Figure 10-a, the coarse effect C depends on
native adaptive effects A and B. Therefore, if either A or B require
refinement, C will execute in the fine fragment stage.

For each effect, we represent the conditions for its fine fragment
stage execution in a set referred to as the effect’s adaptive class.
The adaptive class for an effect with a fine rate qualifier is the
set containing the effect. The adaptive class for all other effects is
the set of native adaptive effects upon which it directly or indirectly
depends. Intuitively, for these effects, the adaptive class enumerates
all potential refine statements that may cause the effect to require
execution in the fine fragment stage. The adaptive classes of all
effects are given in Figure 10.

Phase 2: Interface generation. Given the adaptive class of all
effects, we then generate the coarse-to-fine stage interface. Intu-
itively, values that must be passed from the coarse fragment to fine
fragment stage (and thus must be represented in the interface) are
effects that are computed in the coarse stage but consumed by ef-
fects executed in the fine fragment stage. Thus, the compiler must
statically determine if there is any dynamic execution sequence that
results in an effect and its dependencies being evaluated in different
stages.

This condition is determined by comparing the adaptive class of an
effect with that of its dependencies. Specifically, if effect A refer-
ences effect B (i.e. there is an edge in the DAG that goes from B to
A) and the adaptive class of A contains effects not in the adaptive
class of B, then the result of B must be passed over the interface. In
other words, if the conditions for B executing in the fine fragment
stage are less strict than the conditions for A, then it is possible
for A to execute in the fine fragment stage and B to execute in the
coarse stage. Communication of B across the coarse-to-fine stage
boundary is necessary in this case, and so space must be reserved
for B in the interface. Figure 10 illustrates two example shader
DAGs, the adaptive class for all effects, and the resulting interface
definitions. In example (a) even though any of A, B, or C may be
passed over the interface, only one of these values is passed in any
one shader invocation. Interface storage is optimized accordingly
using register allocation techniques (similar behavior is true in ex-
ample (b), where either A or D may be communicated in any one
instance).

In addition to determining values that must cross the interface, we
also assign control flag slots to each native adaptive effect.

Static-center Static-corner

Figure 12: Corner sample positions yield a more robust difference
predicate in our adaptive shadow effect. The edge receiver predi-
cate detects the presence of shadow variation between samples, so
it is preferable to take differences of occlusion values sampled from
locations spanning the entire block. (See algorithm in Figure 8)

Phase 3: Code generation and optimization. Once the interface
is defined, code generation is straightforward. The compiler emits
code for fine rate effects in the fine fragment stage, code for adap-
tive effects in both stages, and code for all remaining effects in the
coarse fragment stage in DAG topology order. Code is also emit-
ted to marshal data in and out of the interface and to set and check
refinement flags. Applying standard compiler optimizations (e.g.,
dead-code elimination) to the resulting code removes unnecessary
predicate evaluation from the version of adaptive effects emitted to
the fine shader.

6 Evaluation

To evaluate the shading work reduction possible using adaptive,
multi-rate shading as well as the corresponding output image qual-
ity, we ran experiments on the six scenes shown in Figure 13. Our
shading model features diffuse and specular lighting terms and all
scenes, with the exception of WAREHOUSE, feature one shadowed
light source (5×5-tap PCF). (WAREHOUSE features 6 additional un-
shadowed sources to add lighting complexity.) The diffuse, spec-
ular, and shadowing effects may trigger refinement using the pred-
icates discussed in Section 4. Surface albedo textures are always
sampled at per-pixel rates. This baseline shader is simple, yet up to
91% of the instructions may potentially be executed in the coarse
stage. More advanced lighting effects, such as global illumination
lighting, soft shadows, etc. are candidates for coarse sampling and
would drive this number even higher.

We performed all experiments using a CPU-based graphics pipeline
simulator that models wide SIMD execution. All renderings were
performed at 2560×1440 (modeling the native display resolution
of modern high-end 10-inch tablets) unless otherwise specified.
8×MSAA is enabled to minimize geometric edge aliasing.

6.1 Image Quality

We rendered animations of all six scenes and inspected the quality
of the resulting images. Specifically, we looked for aliasing due
to undersampling of adaptive effects or popping due to an adap-
tive effects transitioning between coarse and fine stage sampling in
consecutive frames. When using the adaptive predicates described
in Section 4 we find it difficult to notice any differences between
multi-rate images and corresponding full-rate renderings. Inspec-
tion of magnified difference images shows that, except for isolated
pixels typically on silhouettes, most pixels are almost numerically
identical. (It is possible to nearly eliminate these numerical dif-
ferences by using more aggressive adaptive thresholds, but in our
opinion, the imperceptible gain in image quality did not justify the
increase in shading work.) We refer the reader to the video accom-
panying this paper to compare the outputs of adaptive multi-rate
and traditional GPU shading (as well as difference images).

SPONZA STATION WAREHOUSE HAIRBALLSIBENIK SAN-MIGUEL
= fine (per-pixel) shading = COARSE2X2 shading = COARSE4X4 shading

Figure 13: Top: Six test scenes used to evaluate multi-rate shading pipeline configurations. Bottom: Visualization of the shading frequencies
that result from adaptive logic during DYNAMIC4X4 mode shading.

In our experiments, we found that in the presence of adaptive shad-
ing, corner sampling is often the preferred sampling strategy for two
reasons. The first is that even though center sampling effectively
provides twice the sampling density during coarse fragment shad-
ing, when a shader’s frequency content is sufficiently high to jus-
tify the higher sampling rate, extrapolation error introduced when
resampling from the center sampling positions to block edge pixels
is noticeable. In other words, in situations where corner sampling
requires refinement due to undersampling, center sampling will re-
quire refinement to avoid extrapolation error. Thus, regardless of
sampling pattern, refinement is necessary to achieve high image
quality. Figure 11 shows one example of this case by highlighting
a shadow edge from SPONZA. The second column displays ren-
dered results when adaptivity is disabled. The image generated us-
ing corner sampling (top) has undersampling artifacts. In contrast,
the center-sampled result (bottom) has sharp edges due to extrap-
olation during resampling. However, when adaptivity is enabled,
when using either sampling technique, adaptive predicates detect
high frequency change and trigger refinement yielding an image
that closely matches the reference (column 3).

A second reason to use corner sampling is that positioning sample
points to span the entire coarse block can improve the robustness
of refinement decisions. For example, Figure 12 shows a situation
where an entire coarse sampling block (COARSE4X4 configuration)
falls within one pixel of the active shadow map. As described in
Section 4, our shadow predicate uses only a value difference check
in this case (since no shadow edge may lie in between the samples).
While the center sample positions (center panel) detect no variation
of shadowing in the block, the more conservative corner positions
(right) do, triggering refinement. (Recall the edge receiver predi-
cate serves to handle cases where detail falls in between the sample
points.) For these reasons, we use coverage-bbox sampling in all of
our results, since it provides the corner sampling property in cases
of full-block coverage, and minimizes attribute extrapolation error
in situations of partial coverage. Other adaptive shading effects may
prefer alternative sample positions.

6.2 Performance

Figure 16 plots the total number of screen-space shading instruc-
tions executed by the pipeline (totaled across coarse + fine frag-
ment processing) for all three coarse-stage configurations and all
test scenes (camera angles were manually chosen to be difficult can-
didates for multi-rate shading). We separate vector arithmetic in-
struction counts (shown in blue) from texture fetch requests (shown

COARSE2X2 COARSE4X4 DYNAMIC4X4

Arithmetic instructions Texture fetches

R
el

at
iv

e
in

st
r.

co
un

t 1.0

.75

.50

.25

0 720 1080 1440 720 1080 1440 720 1080 1440
16:9 screen resolution (vertical pixels)

Screen-Resolution Sensitivity

Figure 14: The performance benefit of multi-rate shading grows
with screen resolution (values averaged over all scenes).

SPONZA STATION

DYNAMIC4X4COARSE2X2

R
el

at
iv

e
in

st
ru

ct
io

n
co

un
t

(v
s.

pe
r-p

ix
el

 sh
ad

in
g)

1.0

.75

.50

.25

0 time (frames) time (frames)

Performance Stability Under Animation

Figure 15: The performance benefit of adaptive, multi-rate shading
costs is relatively stable from frame-to-frame. Relative instruction
counts achieved using multi-rate shading over 240-frame anima-
tions are shown.

in orange), and normalize values to counts produced by a traditional
GPU pipeline. Therefore, lower values indicate a greater reduction
in shading work. The simulated pipeline is configured to execute
16-wide SIMD instructions so these total instruction counts reflect
both the overhead of SIMD-divergence as well as additional work
performed by adaptive predicates. (16-wide SIMD execution is rep-
resentative of current Intel and AMD GPUs. A parameter study of
different SIMD widths is discussed in Section 6.3.)

In many configurations, the adaptive, multi-rate pipelines execute
significantly fewer shading instructions. COARSE2X2 performs 38
to 82% as much shading as a traditional pipeline. Arithmetic in-
struction counts are consistently under 50% for the larger triangle
scenes (recall the minimum amount of shading, if all shading work
was performed in the COARSE2X2 configuration’s coarse stage, is

2X2 4X4 DYN
WAREHOUSE STATION SPONZA SIBENIK SAN-MIGUEL HAIRBALL

R
el

at
iv

e
in

st
ru

ct
io

n
co

un
t

(v
s.

re
fe

re
nc

e
G

PU
 sh

ad
in

g)

2X2 4X4 DYN 2X2 4X4 DYN 2X2 4X4 DYN 2X2 4X4 DYN 2X2 4X4 DYN

1.0

0.8

0.6

0.4

0.2

0

2X2 = COARSE2X2
4X4 = COARSE4X4
DYN = DYNAMIC4X4

Arithmetic instructions
Texture fetches

Multi-Rate Shading Cost Reduction (relative to per-pixel shading)

Figure 16: Multi-rate shading decreases the total number of screen-space shading instructions (arithmetic and texture) as compared to a
traditional, non-adaptive GPU pipeline. Arithmetic instruction counts decrease by up to a factor of five in the WAREHOUSE scene. The
benefit of multi-rate shading decreases in scenes with very small triangles (HAIRBALL). All scenes are rendered at 2560×1440 resolution
with 8× MSAA and 16-wide SIMD execution.

25%). COARSE4X4 reduces shading costs further, often executing
under 30% as many arithmetic instructions for large-triangle scenes
(as low as 18%–over a factor of five reduction–on WAREHOUSE).

As expected, scenes containing more high frequency detail require
more shading. For example, SANMIGUEL generates higher rela-
tive instruction counts because the tree’s detailed shadows require a
higher percentage of refinements. Since triangles are shaded inde-
pendently in the pipeline, the benefit of multi-rate shading also de-
creases if scene triangles are small and thus generate sparse coarse-
block coverage. For this reason, all multi-rate schemes shade nearly
80% as much as the baseline in the HAIRBALL small-triangle stress
test, which has an average triangle area of 5.7 pixels. For similar
reasons, the benefit of multi-rate shading diminishes slowly with
decreasing screen resolution as shown in Figure 14.

Dynamically adapting the rate of coarse shading (DYNAMIC4X4)
provides benefit in SANMIGUEL and HAIRBALL where intricate
shadows are not adequately captured by sampling once per 4×4
pixel block, but are often captured sampling once per 2×2. How-
ever, in most other situations, we find that refinement in the
COARSE4X4 configuration often implies need for refinement of the
corresponding blocks in the COARSE2X2 configuration. Thus the
benefits provided by the extra complexity of the DYNAMIC4X4
scheme are marginal. In the specific case of our shaders, DY-
NAMIC4X4 does reduce executions of shadow computations (it re-
duces overall texture fetches compared to COARSE4X4).

A major concern in interactive applications is not just high per-
formance, but predictability of performance. To assess the perfor-
mance stability of multi-rate execution, Figure 15 plots arithmetic
instruction count reduction over 240-frame animation paths through
the SPONZA and STATION scenes (see video for these paths). While
the relative benefit of multi-rate shading clearly varies over the du-
ration of the animation, frame-to-frame variation in performance
is low. (These graphs also confirm our performance evaluation in
Figure 16 utilized near-worst case frames.)

6.3 SIMD Scheduling

To evaluate SIMD efficiency resulting from various pipeline
scheduling strategies, we ran simulations using 8 to 64-wide SIMD
vectors. For each SIMD configuration we evaluated the (1) single-
thread-of-control, (2) two-phase with inter-stage buffering, and (3)
two phase with buffering and fine-fragment sorting strategies dis-
cussed in Section 3.3. Results are shown in Figure 18.

There are significant efficiency benefits from repacking shading
work in between the coarse and fine stages when executing under
the COARSE4X4 configuration. For example, COARSE4X4 shad-
ing using single-thread-of-control scheduling on a 32-wide SIMD

(a) (b) (c)
= COARSE2X2 shading
= fine (per-pixel) shading

(a) Motion blur predicate only
(b) Multi-rate predicates only
(c) Combined predicates

Figure 17: Both the motion blur predicate (a) and our blur-
agnostic multi-rate predicates (b) reduce the cost of shading on
their own, however the benefit of combining the two methods only
reduces instruction count by 3.2% when compared to the multi-rate
optimizations alone (c).

machine results in nearly 1.8 times more instructions executed than
with two-phase scheduling. As predicted, this is due to divergence
resulting from empty vector lanes arising from partially covered
8×8-pixel blocks. Modest benefits are observed from inter-stage
buffering when executing the COARSE2X2 configuration on a wide
SIMD machine. In a 32-wide COARSE2X2 configuration, work
repacking via inter-stage buffering reduces instruction count by ap-
proximately 10% compared to single-thread-of-control scheduling.
Surprisingly, sorting fragments based on adaptive flags (green bars)
has minor performance benefit in COARSE2X2 configurations (at
most 4%). The benefit raises to 10% in the COARSE4X4 pipeline.
We note that the relative benefits of inter-stage buffering/repacking
and fragment sorting execution increase if screen resolution is low-
ered from our 2560×1440 test resolution.

Overall, we conclude that many performance benefits of
COARSE2X2 adaptive, multi-rate shading can likely be realized
with simple hardware implementations. However, realizing the
shading cost reductions possible with COARSE4X4 shading requires
full inter-stage buffering to utilize vector hardware efficiently.

6.4 Motion Blur

In our experiments, we also studied the interaction between post-
process motion blur and multi-rate shading. An unanticipated re-
sult is that for our scenes, the shading cost reductions realized from
multi-rate shading (in the absence of blur) are sufficiently large that
the additional benefit of also considering blur in refinement calcula-
tions is marginal. In fact, the cost reductions described in the prior
sections are similar in magnitude to those of prior work that adapts
shading rate based on blur [Vaidyanathan et al. 2012].

Figure 17 shows a frame from the WAREHOUSE scene with a rapidly
forward-moving camera and compares the benefits of evaluating the

8 16 32 64
COARSE2X2

8 16 32 64
COARSE4X4

8 16 32 64
DYNAMIC4X4

Single-thread-of-control scheduling
Two-phase w/ repacking
Two-phase w/ repacking and sorting

R
el

at
iv

e
ar

ith
m

et
ic

 in
st

r c
ou

nt
(v

s.
re

fe
re

nc
e

G
PU

 sh
ad

in
g) 1.0

0.8

0.6

0.4

0.2

0

Impact of Scheduling Algorithms on SIMD Execution Efficiency

1.29

1.04

Figure 18: Two-phase scheduling of multi-rate shading computations has only modest efficiency benefits in a COARSE2X2 pipeline configu-
ration, but the optimization is critical for maintaining high efficiency under COARSE4X4 or DYNAMIC4X4 execution, particularly when the
machine’s SIMD width is large. Results are averaged over all scenes.

entire shading function at coarse rate in regions of high blur (a) with
the results of adaptive, multi-rate shading in the absence of blur (b).
Notice in (c) that combining the two predicates only results in shad-
ing instruction counts decreasing by 3.2% in a COARSE2X2 config-
uration. (A drop of 45% (panel B) to 42% (panel C) of full per-pixel
shading costs.) Certainly, considering blur in shading rate calcu-
lations allows refinement thresholds in multi-rate predicates to be
relaxed (or may allow new effects, such as bump-mapped surfaces,
to become candidates coarse-rate sampling). However, we find that
using multi-rate shading mechanisms to decrease sampling of low
frequency shading effects, regardless of blur conditions, is in gen-
eral a more effective (more significant cost reductions, and more
predictable–it is applicable to all frames) way to reduce shading
costs during rendering.

7 Discussion

In anticipation of a need for substantially increased shading ef-
ficiency in future GPUs due to high-resolution displays, mobile
graphics processing, and increasingly complex shaders, we have
conducted an extensive study of adaptive, multi-rate shading in
the context of improving modern GPUs. We find that simple
pipeline mechanisms used in conjunction with our adaptive tech-
niques can reduce the cost of shading during rendering by at least
a factor of two (COARSE2X2). More complex pipeline scheduling
(COARSE4X4 or DYNAMIC4X4) can reduce shading costs, on av-
erage, to more than three and sometimes up to a factor of five. In
this paper we primarily demonstrated these benefits for scenes with
smoothly varying lighting, but native GPU support for multi-rate
shading mechanisms also stands to be valuable in situations where
sparse sampling is acceptable due to significant camera motion blur
or precise tracking of viewer gaze [Guenter et al. 2012].

While our initial motivation was to investigate pipeline extensions
for multi-rate rendering in a forward rendering setting, the pro-
posed two-stage pipeline shading mechanisms, adaptive shaders,
and the effect-based language used to conveniently express them
are equally valuable when performing multi-rate shading in a de-
ferred rendering context. Further, although presented in the context
of two-stage, multi-rate shading, our proposed language extensions
and compilation techniques will generalize to pipelines with ad-
ditional shading stages, for example, if shading effects were also
performed at per-multi-sample granularity.

Of course, shading more sparsely than per-pixel rates is only viable
for effects that exhibit slow screen variation. High-frequency phe-
nomena, such as detailed displacement, normal, or bump mapped
surfaces, are not good candidates for coarse shading. However, the
use of bump or normal maps does not imply high surface detail
exists throughout a surface, and one area of future work involves

the design of adaptive predicates that detect low-screen variation
in the appearance of bump-mapped surfaces. Still, many effects
driving up the cost of shading are low-frequency effects, such as
global illumination. These effects are strong candidates for coarse
rate shading and the design of efficient and robust adaptive logic for
them will be important to consider in the future.

8 Acknowledgments

Support for this research was provided by the National Science
Foundation (IIS-1253530) and by gifts from NVIDIA, Intel, and
Qualcomm. The Ogre model is available from the Keenan Crane
model archive. The WAREHOUSE and STATION scenes were cre-
ated by Valve Software. We would like to thank Anjul Patney, Eric
Lum, and Henry Moreton for valuable conversations.

References

AKELEY, K. 1993. RealityEngine graphics. In Proceedings of SIG-
GRAPH 93, ACM Press / ACM SIGGRAPH, Computer Graph-
ics Proceedings, Annual Conference Series, ACM, 109–116.

ANNEN, T., MERTENS, T., SEIDEL, H.-P., FLERACKERS, E.,
AND KAUTZ, J. 2008. Exponential shadow maps. In Proceed-
ings of Graphics Interface 2008, GI ’08, 155–161.

CLARBERG, P., TOTH, R., AND MUNKBERG, J. 2013. A
sort-based deferred shading architecture for decoupled sampling.
ACM Trans. Graph. 32, 4 (July), 141:1–141:10.

DONNELLY, W., AND LAURITZEN, A. 2006. Variance shadow
maps. In Proceedings of the 2006 Symposium on Interactive 3D
Graphics and Games, I3D ’06, 161–165.

FATAHALIAN, K., BOULOS, S., HEGARTY, J., AKELEY, K.,
MARK, W. R., MORETON, H., AND HANRAHAN, P. 2010.
Reducing shading on GPUs using quad-fragment merging. ACM
Trans. Graph. 29, 4 (July), 67:1–67:8.

FOLEY, T., AND HANRAHAN, P. 2011. Spark: Modular, compos-
able shaders for graphics hardware. ACM Trans. Graph. 30, 4
(July), 107:1–107:12.

GUENTER, B., KNOBLOCK, T. B., AND RUF, E. 1995. Special-
izing shaders. In Proceedings of the 22nd Annual Conference
on Computer Graphics and Interactive Techniques, ACM, SIG-
GRAPH ’95, 343–350.

GUENTER, B., FINCH, M., DRUCKER, S., TAN, D., AND SNY-
DER, J. 2012. Foveated 3d graphics. ACM Trans. Graph. 31, 6
(Nov.), 164:1–164:10.

KIRCHER, S., AND LAWRANCE, A. 2009. Inferred lighting: Fast
dynamic lighting and shadows for opaque and translucent ob-
jects. In Proceedings of the 2009 ACM SIGGRAPH Symposium
on Video Games, ACM, Sandbox ’09, 39–45.

LAURITZEN, A. 2010. Deferred rendering for current and fu-
ture rendering pipelines. In ACM SIGGRAPH 2010 Courses:
Beyond Programmable Shading II. Available at http://bps10.
idav.ucdavis.edu.

LIKTOR, G., AND DACHSBACHER, C. 2012. Decoupled deferred
shading for hardware rasterization. In Proceedings of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games,
ACM, I3D ’12, 143–150.

NICHOLS, G., PENMATSA, R., AND WYMAN, C. 2010. Inter-
active, multiresolution image-space rendering for dynamic area
lighting. In Proceedings of the 21st Eurographics Conference on
Rendering, Eurographics Association, EGSR’10, 1279–1288.

NVIDIA CORPORATION. 2013. TXAA - Temporal Anti-
Aliasing Technology. Available at http://www.geforce.com/

landing-page/txaa/technology.

OLANO, M., KUEHNE, B., AND SIMMONS, M. 2003. Auto-
matic shader level of detail. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware,
Eurographics Association, HWWS ’03, 7–14.

PELLACINI, F. 2005. User-configurable automatic shader simplifi-
cation. ACM Trans. Graph. 24, 3 (July), 445–452.

PENNER, E. 2011. Shader amortization using pixel quad message
passing. In GPU Pro2 : advanced rendering techniques. A K
Peters, Ltd., 349–367.

PROUDFOOT, K., MARK, W. R., TZVETKOV, S., AND HANRA-
HAN, P. 2001. A real-time procedural shading system for pro-
grammable graphics hardware. In Proceedings of the 28th An-
nual Conference on Computer Graphics and Interactive Tech-
niques, ACM, SIGGRAPH ’01, 159–170.

RAGAN-KELLEY, J., LEHTINEN, J., CHEN, J., DOGGETT, M.,
AND DURAND, F. 2011. Decoupled sampling for graphics
pipelines. ACM Trans. Graph. 30, 3 (May), 17:1–17:17.

REEVES, W. T., SALESIN, D. H., AND COOK, R. L. 1987. Ren-
dering antialiased shadows with depth maps. SIGGRAPH Com-
put. Graph. 21, 4 (Aug.), 283–291.

SCHERZER, D., YANG, L., MATTAUSCH, O., NEHAB, D.,
SANDER, P. V., WIMMER, M., AND EISEMANN, E. 2012.
Temporal coherence methods in real-time rendering. Computer
Graphics Forum 31, 8, 2378–2408.

SHEBANOW, M., 2013. An evolution of mobile graphics. High
Performance Graphics 2013 Keynote Address.

SITTHI-AMORN, P., MODLY, N., WEIMER, W., AND
LAWRENCE, J. 2011. Genetic programming for shader
simplification. ACM Trans. Graph. 30, 6 (Dec.), 152:1–152:12.

TATARCHUK, N., TCHOU, C., AND VENZON, J. 2013. Destiny:
From mythic science fiction to rendering in real-time. In ACM
SIGGRAPH 2013 Courses: Advanced in Real-Time Rendering
in Games.

VAIDYANATHAN, K., TOTH, R., SALVI, M., BOULOS, S., AND
LEFOHN, A. 2012. Adaptive image space shading for motion
and defocus blur. In Proceedings of the Fourth ACM SIGGRAPH
/ Eurographics Conference on High-Performance Graphics, Eu-
rographics Association, EGGH-HPG’12, 13–21.

YANG, L., SANDER, P. V., AND LAWRENCE, J. 2008. Geometry-
aware framebuffer level of detail. In Proceedings of the Nine-
teenth Eurographics Conference on Rendering, Eurographics
Association, EGSR’08, 1183–1188.

http://bps10.idav.ucdavis.edu
http://bps10.idav.ucdavis.edu
http://www.geforce.com/landing-page/txaa/technology
http://www.geforce.com/landing-page/txaa/technology

